a. x - 1/2 = 2 b. 4: x = 2/3
1) Làm tính nhân: a) (3-2*x+4*x^2)*(1+x-2*x^2). b) (a^2+a*x+x^2)*(a^2-a*x+x^2)*(a-x). 2) Cho đa thức: A=19*x^2-11*x^3+9-20*x+2*x^4. B=1+x^2-4*x Tìm đa thức Q và R sao cho A=B*Q+R. 3) Dùng hằng đẳng thức để làm phép chia: a) (4*x^4+12*x^2*y^2+9*y^4):(2*x^2+3*y^2). b) ( 64*a^2*b^2-49*m^4*n^2):(8*a*b+7*m^2*n). c) (27*x^3-8*y^6):(3*x-2*y^2)
Bạn viết như vậy vẫn nhìn đc nhưng nhìn hơi khó
Thì các bạn vít ra giấy là hỉu nk mong giải giúp mk cái
a, 2.x.(x-1)^2-3.x.(x+3).(x-3)-4.x.(x+1)^2
b,(a-b+c)^2-(b-c)^2+2.a.b-2.a.c
c,(3.x+1)^2-2.(1+3.x).(3.x+5)+(3.x+5)^2
d, (3+1).(3^2+1).(3^4+1).(3^8+1).(3^16+1).(3^32+1)
e, (a+b-c)^2+(a-b+c)^2+(b-c-a)^2+(c-a-b)^2
bài1. tính : a. 3 và 2/5 - 1/2 b. 4/5 + 1/5 x 3/4 c. 3 và 1/2 x 1 và 1/7 d. 4 và 1/6 : 2 và 1/3
bài2 : tính : a. 3 x 1/2 +1/4 x1/3 b. 1 và 4/5 - 2/3 : 2 và 1/3
bài 3 tìm x: a. X x 4/5 = 2 và 1/2 b. x : 3/2 = 11/4 - 5/2
sos
Bài 1
a) 3 2/5 - 1/2
= 17/5 - 1/2
= 34/10 - 5/10
= 29/10
b) 4/5 + 1/5 × 3/4
= 4/5 + 3/20
= 16/20 + 3/20
= 19/20
c) 3 1/2 × 1 1/7
= 7/2 × 8/7
= 4
d) 4 1/6 : 2 1/3
= 25/6 : 7/3
= 25/14
Bài 2
a) 3 × 1/2 + 1/4 × 1/3
= 3/2 + 1/12
= 18/12 + 1/12
= 19/12
b) 1 4/5 - 2/3 : 2 1/3
= 9/5 - 2/3 : 7/3
= 9/5 - 2/7
= 63/35 - 10/35
= 53/35
Bài 1
a) 3 2/5 - 1/2
= 17/5 - 1/2
= 34/10 - 5/10
= 29/10
b) 4/5 + 1/5 × 3/4
= 4/5 + 3/20
= 16/20 + 3/20
= 19/20
c) 3 1/2 × 1 1/7
= 7/2 × 8/7
= 4
d) 4 1/6 : 2 1/3
= 25/6 : 7/3
= 25/14
bủh
cho 2 đa thức
A(x) = 1/3(x^3-6x^4+3x^2-1) + 2(x^2-x^5+x)
B(x) = x^6-4x^5+2x^2+x^3+2/3
a, tính a(x)+b(x), 2a(x)-b(x), 3a(x)-6b(x)
b, tính a(4), a(-1), b(2), a(-1)-2b(1)
3x^4 + 3x^2y^2 + 6x^3y - 27x^2
x^4 + x^3 - x^2 + x
2x^5 - 6x^4 - 2a^2x^3 - 6ax^3
x^5 + x^4 + x^3 + x^2 + x + 1
x^3 - 1 + 5x^2 - 5 + 3x - 3
1/4.(a + 1)^2 - 4/9.(a - 2)^2
12a^2b^2 - 3.(a^2b^2)^2
4x^2y^2 - (x^2 + y^2 - a^2)^2
(a + b + c)^2 + (a + b - c)^2 - 4c^2
x^3 - 1 + 5x^2 - 5 + 3x - 3
1.16x^3y + 0,25yz^3
2.x ^4 – 4x^3 + 4x^2
3.2ab^2 – a^2b – b^3
4.a^3 + a^2b – ab^2 – b^3
5.x^3 + x^2 – 4x - 4
6.x ^3 – x^2 – x + 1
7.x ^4 + x^3 + x^2 – 1
8.x ^2y^2 + 1 – x^2 – y^2
9.x^4 – x^2 + 2x – 1
10.3a – 3b + a^2 – 2ab + b^2
Nếu bn ko nhìn rõ thì ib vs mk nhé, mk sẽ gửi bản full cho bn.
có nhìn thấy j đâu ri msk
Bài 1 : Tìm thương Q và dư R sao cho A= B.Q+R biết ;
a) A = \(x^4+3x^3+2x^2-x-4\) và B = \(x^2-2x+3\)
b) A = \(2x^3-3x^2+6x-4\) và B = \(x^2-x+3\)
c) A = \(2x^4+x^3+3x^2+4x+9\) và B = \(x^2+1\)
d) A = \(2x^3-11x^2+19x-6\) và B = \(x^2-3x+1\)
c) A= \(2x^4-x^3-x^2-x+1\) và B = \(x^2+1\)
Bài 4: thực hiện các phép tính, sau đó tính giá trị biểu thức:
b, B=(x+1)(x^7-x^6+x^5-x^4+x^3-x^2+x-1) với x=2
c, C=(x+1)(x^6-x^5+x^4-x^3+x^2-x+1) với x=2
d, D=2x(10x^2-5x-2)-5x(4x^2-2x-1) với x=-5
Bài 5: thực hiện phép tính, sau đó tính giá trị biểu thức:
a, A=(x^3-x^2y+xy^2-y^3)(x+y) với x=2,y=-1/2
b, B=(a-b)(a^4+a^3b+a^2b^2+ab^3+b^4) với a=3,b=-2
c, (x^2-2xy+2y^2)(x^2+y^2)+2x^3y-3x^2y^2+2xy^3 với x=-1/2;y=-1/2
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
Bài 1 viết các đa thức sau dưới dạng 1 tích
a, A=x^3 +125
b, B= 8y^2-1
c. C=64x^3+27
Bài 2 rút gọn các biểu thức sau
a, (x+2)(x^2-2x+4)-(x^2-4)
b, B=(a+2)(a-2)(a^2+2a+4)(a^2-2a+4)
Bài 3 Tính giá trị biểu thức sau
a, A =x^2 +4x+4 tại x=198
b, B=(2x-1)^2+(2x+1)^2+2(4x^2-1) với x=1/4
c, C=(x-1)^3-(x-1)(x^2+x+1+3)(x-1)(x+1) với x=1/3
Giups mk với cảm ơn các bạn nhìu
Bài 1. a. \(A=x^3+125=\left(x+5\right)\left(x^2-5x+25\right)\)
b. \(B=8y^2-1=\left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right)\)
c. \(C=64x^3+27=\left(64x+27\right)\left(64x^2-1728x+729\right)\)
Bài 2. a. \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^2-4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left[\left(x^2-2x+4\right)-\left(x-2\right)\right]\)
\(=\left(x+2\right)\left(x^2-2x+4-x+2\right)\)
\(=\left(x+2\right)\left(x^2-3x+6\right)\)
Bài 3
a. \(A=x^2+4x+4=x^2+2.x.2+2^2=\left(x+2\right)^2\)
tại x=198, ta có:
\(\left(x+2\right)^2=\left(198+2\right)^2=40000\)
a) \(A=x^3+125=\left(x+5\right)\left(x^2-5x+25\right)\)
b) Câu b mình nghĩ 8y3 sẽ hợp hơn đấy
\(B=8y^3-1=\left(2y-1\right)\left(4y^2+2y+1\right)\)
Còn theo kiểu bạn: \(B=8y^2-1=\left(2\sqrt{2}y-1\right)\left(2\sqrt{2}y+1\right)\)
c) \(C=64x^3+27=\left(4x+3\right)\left(16x^2+12x+9\right)\)
Bài 2:
\(a,\left(x+2\right)\left(x^2-2x+4\right)-\left(x^2-4\right)\)
\(=\left(x+2\right)\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
b) Có nhầm không vậy ;-; ?
Bài 3: \(A=x^2+4x+4=\left(x+2\right)^2\)
với x=198 ta có: (198+2)2 = 40000
\(B=\left(2x-1\right)^2+\left(2x+1\right)^2+2\left(4x^2-1\right)\)
\(B=4x^2-4x+1+4x^2+4x+1+8x^2-2\)
\(B=16x^2\)
với x = 1/4 ta có : \(16\left(\dfrac{1}{4}\right)^2=1\)
tính
a/A=(x+1)^3-(x+3)^2(x+1)+4x^2+8 vs x=-1/6
b/B=(x-1)^3-(x+2)(x^2-2x+4)+3(x+4)(x-4) vs x=-2
\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)
\(A=\left(x^3+3x^2+3x+1\right)-\left(x^2+6x+9\right)\left(x+1\right)-4x^2+8\)
\(A=\left(x^3+3x^2+3x+1\right)-\left(x^3+x^2+6x^2+6x+9x+9\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-x^3-x^2-6x^2-6x-9x-9+4x^2+8\)
\(A=-12x\)
Thay \(x=-\dfrac{1}{6}\) vào \(A\) ta có:
\(A=-12\times\left(-\dfrac{1}{6}\right)=2\)
Vậy \(A=2\) khi \(x=-\dfrac{1}{6}\)
\(B=\left(x-1\right)^3-+\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(B=\left(x^3-3x^2+3x-1\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)+\left(3x^2-48\right)\)
\(B=x^3-3x^2+3x-1-x^3+2x^2-4x-2x^2+4x-8+3x^2-48\)
\(B=3x-57\)
Thay \(x=-2\) vào \(B\) ta có:
\(B=3\times\left(-2\right)-57=-6-57=-63\)
Vậy \(B=-63\) khi \(x=-2\)