Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lâm phạm
Xem chi tiết

Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)

\(=3\left(1-3+3^2-3^3+\cdots+3^{22}-3^{23}\right)\) ⋮3

Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)

\(=3\left(1-3\right)+3^3\left(1-3\right)+\cdots+3^{23}\left(1-3\right)\)

\(=3\cdot\left(-2\right)+3^3\cdot\left(-2\right)+\cdots+3^{23}\left(-2\right)\)

\(=-2\left(3+3^3+\cdots+3^{23}\right)\)

\(=-2\left\lbrack\left(3+3^3\right)+\left(3^5+3^7\right)+\cdots+\left(3^{21}+3^{23}\right)\right\rbrack\)

\(=-2\cdot\left\lbrack3\cdot\left(1+3^2\right)+3^5\left(1+3^2\right)+\cdots+3^{21}\left(1+3^2\right)\right\rbrack\)

\(=-2\cdot10\cdot\left(3+3^5+\cdots+3^{21}\right)=-20\cdot\left(3+3^5+\cdots+3^{21}\right)\) ⋮20

Ta có: \(C=3-3^2+3^3-3^4+\cdots+3^{23}-3^{24}\)

\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+\cdots-\left(3^{22}-3^{23}+3^{24}\right)\)

\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+\cdots+3^{22}\left(1-3+3^2\right)\)

\(=7\cdot\left(3-3^4+\cdots-3^{22}\right)\) ⋮7

Ta có: C⋮20

C⋮7

C⋮3

mà ƯCLN(20;3;7)=1

nên C⋮20*3*7

=>C⋮420

Ngập hết rùi
Xem chi tiết
Dương Lam Hàng
22 tháng 2 2018 lúc 15:37

Ta có: \(\left(x-2\right)^2.\left(y-3\right)=-4=\left(-1\right).4=\left(-4\right).1=\left(-2\right).2=2.\left(-2\right)\)

Nếu \(\left(x-2\right)^2=1\Rightarrow x-2=\pm1\Rightarrow x=\left\{3;1\right\}\)

          \(y-3=-4\Rightarrow y=-1\)

Nếu \(\left(x-2\right)^2=-4\) => Ko thực hiện được (vì bình phương một số không thể bằng một số âm) (Loại)

Nếu \(\left(x-2\right)^2=2\) (loại, ko đúng)

Nếu \(\left(x-2\right)^2=-2\) ( Không thực hiện được) (Loại)

Vậy (x;y) = (3;-1) ; (1;-1) 

Ba Dấu Hỏi Chấm
Xem chi tiết
Hoàng Thảo
6 tháng 9 2017 lúc 21:38

\(\sqrt{1-\sqrt{x^4-x^2}}=x-1\)

\(\sqrt{1-\left|x^2\right|-\left|x\right|}=x-1\)

\(\sqrt{1-x^2-x}=x-1\)

\(x\sqrt{1-x}=x-1\)

\(\sqrt{1-x}=\frac{x-1}{x}\)

\(1-x=\left(\frac{x-1}{x}\right)^2\)

\(1-x=\frac{x^2-1}{x^2}\)

\(1-x=-1\)

\(x=2\)

vay \(x=2\)

khùng 0o0 o0o
6 tháng 9 2017 lúc 21:51

\(x=2\)

Cô Hoàng Huyền
7 tháng 9 2017 lúc 14:53

ĐK: \(\orbr{\begin{cases}x\ge1\\x\le-1\end{cases}}\) và \(1-\sqrt{x^2\left(x^2-1\right)}\ge0\)

Kết hợp điều kiện có nghiệm \(x-1\ge0\) ta có \(1\le x\le\sqrt{\frac{1+\sqrt{5}}{2}}\)

\(\sqrt{1-\sqrt{x^4-x^2}}=x-1\Leftrightarrow1-x\sqrt{x^2-1}=x^2-2x+1\)

\(\Rightarrow x\left(2-x\right)=x\sqrt{x^2-1}\Rightarrow2-x=\sqrt{x^2-1}\) (Vì \(x\ne0\) )

\(\Rightarrow x^2-4x+4=x^2-1\Rightarrow x=\frac{5}{4}\left(tm\right)\)

Muncute123
Xem chi tiết
Nguyễn Quỳnh Như
3 tháng 3 2022 lúc 8:41

google nhé bạn

 

Đỗ Uyên Nhi
Xem chi tiết
Buddy
28 tháng 11 2021 lúc 15:58

45x-38x=1505

=>7x=1505

=>x=215

Đặng Phương Linh
28 tháng 11 2021 lúc 15:59

X*(45-38)=1505

X*7=1505

X=1505:7

X=215

Đỗ Uyên Nhi
28 tháng 11 2021 lúc 16:02

ủa sao m.n toàn giải hộ tui ko vậy,tui bảo nêu cách giải mà 😑

Vũ Ngọc Thủy
Xem chi tiết

\(x\) - (10 - \(x\)) = \(x\) - 22

\(x\) - 10 + \(x\) = \(x\) - 22

2\(x\) - 10 = \(x\) - 22

2\(x\) - \(x\)  = -22 + 10

\(x\)         = - 12

Vũ Ngọc Thủy
19 tháng 1 2024 lúc 20:43

Dạ,em cảm ơn cô ạ!

Trúc Lê
Xem chi tiết
# APTX _ 4869 _ : ( $>$...
31 tháng 3 2019 lúc 19:46

          Q = 14 . 29 + 14 . 71 + ( 1 + 2 + 3 + ... + 99)(199199 . 198 - 198198 . 199)

= 14 . ( 29 + 71 ) + ( 1 + 2 + ... + 99)( 199 . 1001 . 198 - 198 . 1001 . 199 )

= 14 . 100 + ( 1  + 2 + ... + 99) . 0

= 1400 + 0

= 1400

Trần Thảo Nguyên
31 tháng 3 2019 lúc 19:49

\(Q=14.29+14.71+\left(1+2+3+4+....+99\right).\left(199199.198-198198.199\right)\)

\(=14.\left(29+71\right)+\left(1+2+3+4+..+99\right).\left(199.101.198-198.1001.199\right)\)

\(=14.100+\left(1+2+3+4+...+99\right).0\)

\(=1400+0\)

\(=1400\)

Trúc Lê
31 tháng 3 2019 lúc 19:52

cảm ơn hai nhìu nha

Lê Mai Anh
Xem chi tiết
Nguyễn Bình Nguyên
17 tháng 11 2021 lúc 13:16

có 28 trận

Khách vãng lai đã xóa
Hoàng Thục Anh
Xem chi tiết
Trịnh Văn Dũng
2 tháng 10 2023 lúc 4:52

A=100+(98-97)-(96-95)-(2-1)

A=100+1-1-1

A=97

when the imposter is sus
2 tháng 10 2023 lúc 15:35

A = 100 + 98 + 96 + ... + 2 - 97 - 95 - ... - 1

A = 100 + (98 - 97) + (96 - 95) + ... + (2 - 1)

A = 100 + 1 + 1 + ... + 1 (49 số 1)

A = 100 + 49 = 149