A= 4+ 4 mũ 2 + 4 mũ 3+4 mũ 4+...+4 mũ 99 + 4 mũ 100 chia hết cho 5
cho A = 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ....... + 4 mũ 99 + 4 mũ 100
chứng tỏ rằng A chia hết cho 5
Ta có:
A = 4 + 42 + 43 + 44 + ... + 499 + 4100
A = (4 + 42) + (43 + 44) + ... + (499 + 4100)
A = 4(1 + 4) + 43(1 + 4) + ... + 499(1 + 4)
A = 4.5 + 43.5 + ... + 499.5
A = 5.(4 + 43 + ... + 499)
Vậy A chia hết cho 5
\(A=4+4^2+4^3+...4^{99}+4^{100}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)
\(A=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{99}.\left(1+4\right)\)
\(A=4.5+4^3.5+..4^{99}.5\)
\(A=5.\left(4+4^3+...4^{99}\right)\)
\(\Rightarrow A⋮5\)
A=4+42+43+44+......+499+4100
=> A=(4+42)+(43+44)+......+(499+4100)
=> A=4(1+4)+43(1+4)+.....+499(1+4)
=> A=4.5+43.5+.....+499.5
=> A=5(4+43+....+499)
=> A chia hết cho 5 (đpcm)
Chứng tỏ:
a)S=4+4 mũ 2+4 mũ 3+4 mũ 4+...+4 mũ 99+4 mũ 100 chia hết cho 5
b)S=2+2 mũ 2+2 mũ 3+2 mũ 4+...+2 mũ 2009+2 mũ 2010 chia hết cho 6
c)S=1+7+7 mũ 2+7 mũ 3+...+7 mũ 101 chia hết cho 8
d)S=4 mũ 39+4 mũ 40+4 mũ 41 chia hết cho 28
AI XONG TRC MÌNH TICK NHA~
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
a)Cm A=10mũ99 cộng 104 chia hết cho hai và ba
b)Cm B=10 mũ 100 cộng 17 chia hết cho 9
c)Cm 10 mũ 11 cộng với 8 chia hết cho 18 với n thuộc z và n bé hơn hoặc bằng 2
mong mọi người trả lời giúp mik cảm ơn các bạn
chứng minh ( 3+3 mũ 2+3 mũ 3+3 mũ 4+....+3 mũ 99+3 mũ 100) chia hết cho 4
a=4+4 mũ 2 +4mũ 3+4 mũ 4+...+4 mũ 99+4 mũ 100
tìm số dư khi a chia cho 5
A=4+42+43+...+4100
4A=4.(4+42+43+...+4100)
4A=4.4+4.42+...+4.499+4.4100
4A= 42+...+4100+4101
- A=4+42+...+4100
= 3A=4101-4
3A=4100+1-4
3A=4100.4-4
3A=(42)50.4-4
3A=1650.4-4
3A=.......6.4-4
3A=.......4-4
3A=.......0
A=.......0:3
A=.......0
Vậy A : 5 dư 0.
Tick cho mình nếu đúng nha bạn!
chứng tỏ rằng
a=2+2 mũ 2 +2 mũ 3+2 mũ 4 +2 mũ 5 +.......... +2 mũ 99 + 2 mũ 100
chia hết cho 62
a = 2 + 22 +23+........................+ 2100 chia hết cho 62
a = [ 2 + 22 +23+.24+25 ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ]
a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ]
a= 62 . [ 210 + 215 + 220 +......................+ 2100 ]
Mà 62 chia hết cho 62 => 62 . [ 210 + 215 + 220 +......................+ 2100 ] hay a chia hết cho 62
a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)
= 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)
= 62+2^5.62+....+2^95.62
= 62.(1+2^5+....+2^95) chia hết cho 62
=> ĐPCM
k mk nha
Cho A = 4 + 4 mũ 2 + 4 mũ 3 + .... + 4 mũ 100 , chứng tỏ A chia hết cho 4 , a chia hết cho 5
A=4+42+43+...+4100
A=4(1+41+42+...+499)chia hết cho 4
suy ra a chia hết cho 4
A=(4+42)+(43+44)+...+(499+4100)
A=4(1+4)+43(1+4)+...+499(1+4)
A=(1+4)(4+43+...+499)
A=5(4+43+...+499)cha hết cho 5
suy ra Achia hết cho 5
Cho A =3+3 mũ 2 +3 mũ 3+3 mũ +3 mũ 4 + ...+3 mũ 98 +3 mũ 99 + 3 mũ 100 . Chứng minh rằng A chia hết cho 120
A = (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^97+3^98+3^99+3^100)
= 120+3^4.(3+3^2+3^3+3^4)+.....+3^96.(3+3^2+3^3+3^4)
= 120+3^4.110+....+3^96.120
= 120.(1+3^4+.....+3^96) chia hết cho 120
=> ĐPCM
Tk mk nha
ta co A=(31+32+33+34)+...+(397+398+399+3100)
tớ gợi ý nhiêu đây thôi
chứng tỏ a chia hết cho 6 với A=2+2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ....+2 mũ 99 + 2 mũ 100
\(A=2+2^2+2^3+...+2^{100}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{98}.6\)
\(A=6\left(1+2^2+...+2^{98}\right)\)
Có : \(6⋮6\)
\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(\Rightarrow A⋮6\)
suuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
A= 2 + 2\(^2\) + 2\(^3\) + .... + 2\(^{100}\)
A = (2 + 2\(^2\)) + (2\(^3\) + 2\(^4\)) + .... + (2\(^{99}\) + 2\(^{100}\))
\(\)A = (2 + 2\(^2\)) + 2\(^2\)(2 + 2\(^2\)) +....+ 2\(^{98}\) (2 + 2\(^2\))
A = 6 + 2\(^2\).6 + .... + 2\(^{98}\).6
A = 6 (1 + 2\(^2\) + .... + 2\(^{98}\)) \(⋮\) 6
Bài 1: Tính
a, B = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... + 2 mũ 100
b, C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .... + 3 mũ 2003
c, D = 1 + 5 + 5 mũ 2 + 5 mũ 3 + ... 5 mũ 1997
d, E = 4 + 4 mũ 2 + 4 mũ 3 + ... + 4 mũ n
Bài 2: Tìm a
a, ( 2a + 27 ) chia hết 2a + 1
b, ( 5a + 28 ) chia hết a + 2
c, ( 3a + 15 ) chia hết ( 3a - 1 )