Cho đường tròn tâm O và 2 điểm A,B nằm bên ngoài đường tròn dựng đường kính COD sao cho AC=BD
Cho đường tròn (O) và hai điểm A, B nằm bên ngoài đường tròn. Dựng đường kính COD sao cho AC = BD.
* Cách dựng
- Dựng A’ đối xứng với A qua tâm O của đường tròn
- Dựng đường thẳng x là trung trực của A’B
- Gọi giao điểm của đường thẳng x và đường tròn (O) là D
- Dựng đường kính COD
* Chứng minh
Ta có: OA = OA’ và OD = OC
Suy ra tứ giác ACA’D là hình bình hành
Suy ra: AC = A’D
Lại có: A’D = BD (tính chất đường trung trực)
Suy ra: AC = BD
Cho đường tròn (O) và hai điểm A, B nằm bên ngoài đường tròn. Dựng đường kính COD sao cho AC=BD.
Cho đường tròn (O) và hai điểm A, B nằm ngoài đường tròn. Dựng đường kính COD sao cho AC = BD
Biện luận :
Tùy theo số giao điểm của d và đường tròn (O) là 2, 1, 0 mà bài toán có 2, 1, 0 nghiệm hình.
(Trên hình 89, bài toán có 2 nghiệm hình)
cho đường tròn (O;R) từ điểm A ở bên ngoài đường tròn sao cho OA = 2R. Kẻ 2 tiếp tuyến AB,AC với đường tròn ( B,C tiếp điểm)
a) vẽ đường kính COD. C/Minh BD//AO
b) gọi E là 1 điểm thuộc cung nhỏ BC. kẻ tiếp tuyến với đường tròn tại E cắt AB và AC theo thức tự M,N. TÍNH GÓC MON VÀ chu vi tam giác AMN
Cho đường tròn (O;R) và một điểm A nằm bên ngoài đường tròn(O)sao cho OA=2R.Bẽ các tiếp tuyến AB,AC (B,C là các tiếp điểm).Kẻ đường kính BD của (O) tiếp tuyến tại D của (O) cắt BC tại E,AO cắt O tại I a.C/m tứ giác ABOC nội tiếp, định tâm và bán kính của đường tròn này b.C/m BC.BE+AI.AO=6R²
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA
=>AI*AO=2R^2
Xét ΔBDE vuông tại D có DC vuông góc BE
nên ΔBDE vuông tại D
=>BC*BE=BD^2=4R^2
=>BC*BE+AI*AO=6R^2
Cho đường tròn tâm O , bán kính R và điểm A nằm ngoài đường tròn sao cho OA > 2R . Từ A kẻ hai tiếp tuyến AB , AC đến đường tròn (O) (B,C là 2 tiếp điểm ) . Trên cung nhỏ BC lấy điểm D sao cho CD < BD , tia AD cắt đường tròn (O) tại điểm E (E khác D). Qua B vẽ đường thẳng song song với AE cắt (O) tại K , CK cắt DE tại M.Vẽ tia AC cắt BE tại F .c/m nếu E là trung điểm của BF thì BC=DE
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Dùng thước và compa, hãy dựng các điểm B và C thuộc đường tròn (O) sao cho AB và AC là các tiếp tuyến của đường tròn (O).
* Phân tích
Giả sử tiếp tuyến AB và AC cần dựng thỏa mãn điều kiện bài toán
Ta có: AB ⊥ OB ⇒ ∠ ABO = 90 °
AC ⊥ OC ⇒ ∠ ACO = 90 °
Tam giác ABO có ∠ ABO = 90 ° nội tiếp trong đường tròn đường kính AO và tam giác ACO có ∠ ACO = 90o nội tiếp trong đường tròn đường kính AO.
Suy ra B và C là giao điểm của đường tròn đường kính AO với đường tròn (O).
* Cách dựng
- Dựng I là trung điểm của OA
- Dựng đường tròn (I; IO) cắt đường tròn (O) tại B và C
- Nối AB, AC ta được hai tiếp tuyến cần dựng
* Chứng minh
Tam giác ABO nội tiếp trong đường tròn (I) có OA là đường kính nên: ∠ ABO = 90 °
Suy ra: AB ⊥ OB tại B nên AB là tiếp tuyến của đường tròn (O)
Tam giác ACO nội tiếp trong đường tròn (I) có OA là đường kính nên: ∠ ACO = 90 °
Suy ra: AC ⊥ OC tại C nên AC là tiếp tuyến của đường tròn (O)
* Biện luận
Luôn dựng được đường tròn tâm I, cắt đường tròn tâm O tại hai điểm B và C và luôn có AB, AC là hai tiếp tuyến của đường tròn (O).
Cho 3 điểm A;B;C theo thứ tự nằm trên 1 đường thẳng .Trên cùng 1 nửa mặt phẳng bờ AC,dựng nửa đường tròn tâm O đường kính AB ;dựng nửa đường tròn tâm O' đường kính BC .Dựng tiếp tuyến chung ngoài EF(E là tiếp điểm của đường tròn tâm O;F là tiếp điểm của đường tròn tâm O').Đường thẳng AE cắt CF ở M .
1)CM tứ giác BEFM nội tiếp
2)CM tứ giác BEFM là hình chữ nhật