Tính
( x + 1 ) 2 = 9
( x - 1 ) 3 = 64
tính x
a) ( x - 20 )3 = - 64
b) 9 ( x + 1) - 11 ( x + 7 ) = 105 - 1
`#3107`
`a)`
`(x - 20)^3 = -64`
`\Rightarrow (x - 20)^3 = (-4)^3`
`\Rightarrow x - 20 = -4`
`\Rightarrow x = -4 + 20`
`\Rightarrow x = 16`
Vậy, `x = 16.`
`b)`
`9(x + 1) - 11(x + 7) = 105 - 1`
`\Rightarrow 9(x + 1) - 11(x + 7) = 104`
`\Rightarrow 9x + 9 - 11x - 77 = 104`
`\Rightarrow (9 - 11)x + (9 - 77) = 104`
`\Rightarrow -2x - 68 = 104`
`\Rightarrow -2x = 104 + 68`
`\Rightarrow -2x = 172`
`\Rightarrow x = 172 \div (-2)`
`\Rightarrow x = -86`
Vậy,` x = -86.`
a) Ta có ( x - 20 )3 = -64 = ( -4 )3
⇒ x - 20 = -4
⇒ x = 20 + ( -4 ) = 16
b) Ta có 9 ( x + 1 ) - 11 ( x + 7 ) = 105 - 1
⇒ 9x + 9 - 11x - 77 = 104
⇒ ( -2 ) . x - 68 = 104
⇒ ( -2 ) . x = 104 - 68 = 36
⇒ x = 36 : ( -2 ) = -18
a)
\(\left(x-20\right)^3=-64\)
\(\left(x-20\right)^3=-4^3\)
\(\Rightarrow x-20=-4\)
\(\Rightarrow x=-4+20=16\)
b)
\(9\left(x+1\right)-11\left(x+7\right)=105-1\)
\(9\left(x+1\right)-11\left(x+1+6\right)=104\)
\(9\left(x+1\right)-11\left(x+1\right)+66=104\)
\(\left(x+1\right).\left(9-11\right)=104-66\)
\(\left(x+1\right).\left(-2\right)=38\)
\(x+1=38:\left(-2\right)\)
\(x+1=-19\)
\(x=-19-1\)
\(x=-20\)
a,|x|-7/6=9/15
b,|x-4/3|=1/6
c,|x-4/3|-1/3=1/2
d,8/3-|7/9-x|=-1/5
e,|x-1/4^2|-25/64=0
f,(x-1/4)^2+17/64=21/32
a) \(\left|x\right|-\frac{7}{6}=\frac{9}{15}\)
=> \(\left|x\right|=\frac{9}{15}+\frac{7}{6}=\frac{53}{30}\)
=> \(\orbr{\begin{cases}x=\frac{53}{30}\\x=-\frac{53}{30}\end{cases}}\)
b) \(\left|x-\frac{4}{3}\right|=\frac{1}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{1}{6}\\x-\frac{4}{3}=-\frac{1}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{7}{6}\end{cases}}\)
c) \(\left|x-\frac{4}{3}\right|-\frac{1}{3}=\frac{1}{2}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{1}{2}+\frac{1}{3}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{5}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{5}{6}\\x-\frac{4}{3}=-\frac{5}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{6}\\x=\frac{1}{2}\end{cases}}\)
d) \(\frac{8}{3}-\left|\frac{7}{9}-x\right|=-\frac{1}{5}\)
=> \(\left|\frac{7}{9}-x\right|=\frac{43}{15}\)
=> \(\orbr{\begin{cases}\frac{7}{9}-x=\frac{43}{15}\\\frac{7}{9}-x=-\frac{43}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{94}{45}\\x=\frac{164}{45}\end{cases}}\)
e) \(\left|x-\left(\frac{1}{4}\right)^2\right|-\frac{25}{64}=0\)
=> \(\left|x-\frac{1}{16}\right|=\frac{25}{64}\)
=> \(\orbr{\begin{cases}x-\frac{1}{16}=\frac{25}{64}\\x-\frac{1}{16}=-\frac{25}{64}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{29}{64}\\x=-\frac{21}{64}\end{cases}}\)
f) \(\left(x-\frac{1}{4}\right)^2+\frac{17}{64}=\frac{21}{32}\)
=> \(\left(x-\frac{1}{4}\right)^2=\frac{25}{64}\)
=> \(\left(x-\frac{1}{4}\right)^2=\left(\frac{5}{8}\right)^2\)
=> \(\orbr{\begin{cases}x-\frac{1}{4}=\frac{5}{8}\\x-\frac{1}{4}=-\frac{5}{8}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{3}{8}\end{cases}}\)
GPT:
a,\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b,\(x-7\sqrt{x-3}+9=0\)
a, ĐKXĐ : \(x\ge1\)
Ta có ; \(PT\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9}\sqrt{x-1}+24.\sqrt{\dfrac{1}{64}}\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\left(\dfrac{1}{2}-\dfrac{3}{2}\sqrt{9}+24\sqrt{\dfrac{1}{64}}\right)=-17\)
\(\Leftrightarrow-\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x=290\left(TM\right)\)
Vậy ....
b, ĐKXĐ : \(x\ge3\)
Ta có : \(PT\Leftrightarrow x-3-7\sqrt{x-3}+12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\) ( TM )
Vậy ..
a) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow-\sqrt{x-1}=-17\)
\(\Leftrightarrow x-1=17^2=289\)
hay x=290
Vậy: S={290}
b) Ta có: \(x-7\sqrt{x-3}+9=0\)
\(\Leftrightarrow x-7\sqrt{x-3}=-9\)
\(\Leftrightarrow x-3-2\cdot\sqrt{x-3}\cdot\dfrac{7}{2}+\dfrac{49}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{x-3}-\dfrac{7}{2}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\)
Vậy: S={19;12}
a \(ĐKXĐ:x\ge1\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{3^2}{2}\sqrt{x-1}+\dfrac{24}{8}\sqrt{x-1}=-17\Leftrightarrow\dfrac{1}{2}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\) \(\Leftrightarrow-4\sqrt{x-1}+3\sqrt{x-1}=-17\Leftrightarrow-\sqrt{x-1}=-17\Leftrightarrow\sqrt{x-1}=17\Rightarrow x-1=289\Leftrightarrow x=290\left(TM\right)\) b \(ĐKXĐ:x\ge3\)
\(\Leftrightarrow x-3-7\sqrt{x-3}+12=0\Leftrightarrow\left(\sqrt{x-3}-3\right)\left(\sqrt{x-3}-4\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=3\\\sqrt{x-3}=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x-3=9\\x-3=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(TM\right)\\x=19\left(TM\right)\end{matrix}\right.\)
1,tìm x
(2^5:2^3)*2^x=64
2,tính
F=1 +3 +3^2 + 3^3+………+3^9
Giải giúp với mk đag cần gấp giải nha
1)\(\left(2^5:2^3\right).2^x=64\)
\(\Rightarrow2^{5-3+x}=2^6\)
\(\Rightarrow2^{2+x}=2^6\)
\(\Rightarrow.2^22^x=2^6\)
\(\Rightarrow2^x=2^6:2^2\)
\(\Rightarrow2^x=2^4\Rightarrow x=4\)
2)Tính:
\(F=3^0+3^1+...+3^9\)
\(\Rightarrow3F=3\left(3^0+3^1+...+3^9\right)=3+3^2+3^3+...+3^{10}\)
\(3F-F=3+3^2+...+3^{10}-3^0-3^1-...-3^9\)
\(2F=3^{10}-3^0=3^{10}-1\)
\(F=\frac{3^{10}-1}{2}\)
2
ta có : F = 1 + 3 + 32 + ..... + 39
=> 3F = 3 + 32 + 33 +..... + 310
=> 3F - F = 310 - 1
=> 2F = 310 - 1
=> F = \(\frac{3^{10}-1}{2}\)
(2^5:2^3)*2^x=64
2^2. 2^x = 2^6
2^x= 2^6 : 2^2
2^x = 2^4
=> x= 4
\(\dfrac{1}{27}+a^3\\ 8x^3+27y^3\\ \dfrac{1}{8}x^3+8y^3\\ x^6+1\\ x^9+1\\ x^3-64\\ x^3-125\\ 8x^6-27y^3\\ \dfrac{1}{64}x^6-125y^3\\ \dfrac{1}{8}x^3-8\\ x^3+6x^2+12x+8\\ x^3+9x^2+27x+27\) Giúp mình với mình cần gấp ;-;
1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)
2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)
4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)
7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)
8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)
10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)
11) \(=\left(x+2\right)^3\)
12) \(=\left(x+3\right)^3\)
Tính giá trị biểu thức :
A = ( 3 - 1 / 4 + 2 /3 ) - ( 5 1/3 - 6/5 ) - ( 6 - 7/4 + 3 /2 )
B = 1 / 3 - 3 / 4 - ( -3/ 5 ) + 1 /64 - 2 / 9 - 1 /36 + 1 / 15
C = 1 / 3 - 3 / 5 + 5/7 - 7/ 9 + 9 /11 - 11 / 13 + 13 / 15 + 11/ 13 - 9 /11 + 7 / 9
D = 1/99 - 1 /99 x 98 - 1 / 98 x 97 - 1 /97 x 96 - ........ - 1 / 3x 2 - 1/ 2 x 1
hơi bị khó... chờ mình ghi lại để hỏi cô!!!
Tính giá trị biểu thức :
A = ( 3 - 1 / 4 + 2 /3 ) - ( 5 1/3 - 6/5 ) - ( 6 - 7/4 + 3 /2 )
B = 1 / 3 - 3 / 4 - ( -3/ 5 ) + 1 /64 - 2 / 9 - 1 /36 + 1 / 15
C = 1 / 3 - 3 / 5 + 5/7 - 7/ 9 + 9 /11 - 11 / 13 + 13 / 15 + 11/ 13 - 9 /11 + 7 / 9
D = 1/99 - 1 /99 x 98 - 1 / 98 x 97 - 1 /97 x 96 - ........ - 1 / 3x 2 - 1/ 2 x 1
A = ( 4/4 + 2/3 ) - ( 51/3 - 6/5 ) - ( 6 - 7/4 + 3/2 )
Sau đó quy đồng rồi trừ cả là đc
B tương tự
C=13/15
D cx thế . Bạn tự vận dụng đi . Xl vì ko giải đc . Mik đang gấp
1. Tính hợp lý: -64.(82-28)-82.(56-64)
2. Tính giá trị của x thuộc Z: 2(x-1)+3(2-x)= -1
3. Tìm n thuộc Z: (n2+3) chia hết cho (n-1)
fgv vttf bv vb v bv g
1. Tính hợp lý: -64.(82-28)-82.(56-64)
2. Tính giá trị của x thuộc Z: 2(x-1)+3(2-x)= -1
3. Tìm n thuộc Z: (n2+3) chia hết cho (n-1)
2. 2(x-1) +3 2-x) =- 1
\(\Leftrightarrow2x-2+6x-3=-1\)
\(\Leftrightarrow8x-5=-1\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\)
Vậy x = 1/2
3. ( n2 + 3 ) chia hết cho ( n - 1)
\(\Leftrightarrow n^2-1+4⋮n-1\Leftrightarrow\left(n-1\right)\left(n+1\right)+4⋮n-1\)
Vì n thuộc Z => ( n-1) ( n+1) thuộc Z
\(\Rightarrow\left(n-1\right)\left(n+1\right)+4⋮n-1\Leftrightarrow4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Phần còn lại bn tự làm