Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
công chúa bong bóng
Xem chi tiết
phung thi  khanh hop
23 tháng 1 2016 lúc 18:10

cậu chia từng câu ra cho mình nhé

Lê Tự Phong
Xem chi tiết
Lê Tự Phong
Xem chi tiết
Phương Anh
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 12 2021 lúc 10:25

\(a,A=\dfrac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}\\ A=\dfrac{7x+35}{\left(x-1\right)\left(x+5\right)}=\dfrac{7\left(x+5\right)}{\left(x-1\right)\left(x+5\right)}=\dfrac{7}{x-1}\\ b,A\in Z\\ \Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;8\right\}\left(tm\right)\\ b,A< 0\Leftrightarrow x-1< 0\left(7>0\right)\\ \Leftrightarrow x< 1;x\ne-5\\ c,\left|A\right|=3\Leftrightarrow\dfrac{7}{\left|x-1\right|}=3\Leftrightarrow\left|x-1\right|=\dfrac{7}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}+1=\dfrac{10}{3}\left(tm\right)\\x=-\dfrac{7}{3}+1=-\dfrac{4}{3}\left(tm\right)\end{matrix}\right.\)

bao
Xem chi tiết
Minh Hiền
30 tháng 1 2016 lúc 9:35

a. (x - 5).(x + 2) < 0

Vì x - 5 < x + 2 nên xét trường hợp:

x - 5 < 0; x + 2 > 0

=> x < 5; x > -2

=> -2 < x < 5

=> x thuộc {-1; 0; 1; 2; 3; 4}

b. (x - 3) . (x + 2) > 0 

+) x - 3 < 0; x + 2 < 0

=> x < 3; x < -2

=> x -2 thì thỏa mãn

+) x - 3 > 0; x + 2 > 0

=> x > 3; x > -2

=> x > 3 là thỏa mãn.

cao nguyễn thu uyên
30 tháng 1 2016 lúc 9:30

hic quên cách làm rùi để mk tìm lại

Lưu Thanh Thủy
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
19 tháng 7 2017 lúc 18:51

a) Ta có :  (x+ 1).(x + 3) = 0

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(\text{loại}\right)\\x=-3\end{cases}}\)

nguyen thanh tung
Xem chi tiết
thihan le
21 tháng 1 2022 lúc 20:55

 

 

 

 

a)B=x+5 +x +x-5/x(x-5)=3x/x(x-5)=3/x-5

        b)đkxđ   x khác 5

Đăng Trần
21 tháng 1 2022 lúc 20:59

 

a)B=x+5 +x +x-5/x(x-5)=3x/x(x-5)=3/x-5

        b)đkxđ   x khác 5

Nguyễn Huy Tú
21 tháng 1 2022 lúc 21:04

1, đk x khác 0 ; -5 

\(B=\dfrac{x+5+x+x-5}{x\left(x+5\right)}=\dfrac{3}{x+5}\)

2, B = 3/(x+5) > 0 => x + 5 > 0 <=> x > -5 

3, \(\Rightarrow x+5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x + 51-13-3
x-4-6-2-8

 

Ngọc Hà
Xem chi tiết

a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0

    (\(x-2\))2 ≥ 0 ∀\(x\)\(x+1\) = 0 ⇒ \(x=-1\)\(x-4\) = 0 ⇒ \(x=4\)

Lập bảng ta có:

\(x\)        - 1             4
\(x+1\)  -       0       +    |       +
\(x-4\)  -       |         -     0     +
(\(x-2\))2 +       |        +     |      +
(\(x-2\))2.(\(x+1\)).(\(x+4\))   +     0       -      0     +

Theo bảng trên ta có: -1 < \(x\) < 4

Vậy \(-1< x< 4\)

 

 

b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0

    \(x-3=0\)⇒ \(x=3\)\(x-9\) = 0 ⇒ \(x=9\)

    Lập bảng ta có:

\(x\)            3                                 9
\(x-3\)     -      0      +                         |     +
\(x-9\)     -     |         -                         0    + 
\(x^2\)   +       |        +                         |     +                              
\(x^2\)(\(x-3\)):(\(x-9\))    +     0         -                      0      +

Theo bảng trên ta có:     3 < \(x\) < 9

Vậy 3 < \(x\) < 9

 

 

c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)

⇒  \(\dfrac{5}{x}\) - 1 < 0 ⇒  \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)

Lập bảng ta có:

\(x\)                 0                                  5
\(x-5\)        +       |              +                   0     -
\(x\)        -       0             +                    |       +
\(\dfrac{x-5}{x}\)        -      ||              +                    0      -

Theo bảng trên ta có  \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)

Vậy tập hợp nghiệm của bất phương trình đã cho là:

S = (- ∞; 0) \(\cup\) (5 ; + ∞)

 

 

Phs Hói
Xem chi tiết

a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0

    (\(x-2\))2 ≥ 0 ∀\(x\)\(x+1\) = 0 ⇒ \(x=-1\)\(x-4\) = 0 ⇒ \(x=4\)

Lập bảng ta có:

\(x\)        - 1             4
\(x+1\)  -       0       +    |       +
\(x-4\)  -       |         -     0     +
(\(x-2\))2 +       |        +     |      +
(\(x-2\))2.(\(x+1\)).(\(x+4\))   +     0       -      0     +

Theo bảng trên ta có: -1 < \(x\) < 4

Vậy \(-1< x< 4\)

 

b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0

    \(x-3=0\)⇒ \(x=3\)\(x-9\) = 0 ⇒ \(x=9\)

    Lập bảng ta có:

\(x\)            3                                 9
\(x-3\)     -      0      +                         |     +
\(x-9\)     -     |         -                         0    + 
\(x^2\)   +       |        +                         |     +                              
\(x^2\)(\(x-3\)):(\(x-9\))    +     0         -                      0      +

Theo bảng trên ta có:     3 < \(x\) < 9

Vậy 3 < \(x\) < 9