M= I x-2016 I + I x-2017 I
Giải phương trình
I x-2016 I + I x-2017 I = 1
Xét \(x< 2016\) ta có :
\(\left|x-2016\right|+\left|x-2017\right|=2016-x+2017-x=4033-2x=1\)
\(\Rightarrow x=2016\) (loại)
Xét \(2016\le x\le2017\) ta có :
\(\left|x-2016\right|+\left|x-2017\right|=x-2016+2017-x=1\) (TM)
Xét \(x>2017\) ta có :
\(\left|x-2016\right|+\left|x-2017\right|=x-2016+x-2017=2x-4033=1\)
\(\Rightarrow x=2017\) (loại)
Vậy \(2016\le x\le2017\)
lập bảng xét dấu ra
xét đk phương trình và cứ giải BT tìm x !!
đk là ... VD lx-2l xét 2 trường hợp x-2>=0 và x-2<0
cứ làm w nhé !!!!
mik k thể giải cụ thể cho bn xin lỗi !!
TÌm giá trị nhỏ nhất của : A= I x-2016 I - I 2017 - x I khi x thay đổi
1. Tìm giá trị lớn nhất
a. A = - I x+3 I + 2017
b. B = 120 - I 30 - x I - I 40 + y I
c. C = 2016 - I 2x + 1 I
d. D = - I x + 1 I - I y + 2 I =11
a, Ta có: \(-\left|x+3\right|\le0\)
\(\Rightarrow A=-\left|x+3\right|+2017\le2017\)
Dấu " = " xảy ra khi \(-\left|x+3\right|=0\Rightarrow x=-3\)
Vậy \(MAX_A=2017\) khi x = -3
b, Ta có: \(\left\{{}\begin{matrix}-\left|30-x\right|\le0\\-\left|40+y\right|\le0\end{matrix}\right.\Rightarrow-\left|30-x\right|-\left|40+y\right|\le0\)
\(\Rightarrow B=120-\left|30-x\right|-\left|40+y\right|\le120\)
Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}\left|30-x\right|=0\\\left|40+y\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=30\\y=-40\end{matrix}\right.\)
Vậy \(MAX_B=120\) khi x = 30, y = -40
c, Ta có: \(-\left|2x+1\right|\le0\)
\(\Rightarrow C=2016-\left|2x+1\right|\le2016\)
Dấu " = " xảy ra khi \(\left|2x+1\right|=0\Rightarrow x=\dfrac{-1}{2}\)
Vậy \(MAX_C=2016\) khi \(x=\dfrac{-1}{2}\)
d, Sai đề
Mk có mấy bài toán đội tuyển cần các bn giúp đỡ gấp! Hết hạn vào 19h ngày 26 - 3 - 2017 nha!
Bài 1: So sánh các phân số sau bằng cách nhanh nhất (không quy đồng):
a) 40/49 và 15/21.
b) 22/49 và 3/8.
c) 25/46 và 12/18.
d) (10^2015+1)/(10^2016+1) và 10^2016)/(10^2017+1).
Bài 2: Tính hợp lý:
3/7 . (13/8 - 7/9) - 5/8 : (3/7 - 8/15)
Bài 3: Tính giá trị biểu thức:
A = x^2017 - 2016 . x^2016 - 2016 . x^2015 - ... - 2016 . 1 khi x = 2017.
bái 1 : tìm giá trị nhỏ nhất của biểu thức
a, B = I x-5 I +I2-x I
b, C= I y+8 I + I y-2 I
c, P= I x-2015 I + I x-2016 I + I x -2017 I
a, B = |x-5| +|2-x|
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-5\right|+\left|2-x\right|\ge\left|x-5+2-x\right|=3\)
\(\Rightarrow B\ge3\)
Dấu = khi \(\left(x-5\right)\left(2-x\right)\ge0\)\(\Rightarrow2\le x\le5\)
\(\Leftrightarrow\begin{cases}\left(x-5\right)\left(2-x\right)=0\\2\le x\le5\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\x=2\end{cases}\)
Vậy MinB=3 khi \(\begin{cases}x=5\\x=2\end{cases}\)
b)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|y+8\right|+\left|2-y\right|\ge\left|y+8+2-y\right|=10\)
\(\Rightarrow C\ge10\)
Dấu = khi \(\left(y+8\right)\left(y-2\right)\ge0\)\(\Rightarrow-8\le x\le2\)
\(\Leftrightarrow\begin{cases}\left(y+8\right)\left(y-2\right)=0\\-8\le x\le2\end{cases}\)\(\Leftrightarrow\begin{cases}y=-8\\y=2\end{cases}\)
Vậy MinC=10 khi \(\begin{cases}y=-8\\y=2\end{cases}\)
c)Ta có:
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(\ge x-2015+0+2017-x=2\)
\(\Rightarrow P\ge2\)
Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)
Vậy MinP=2 khi x=2016
Tìm GTNN của :
\(A=\frac{|x-2016|+2017}{\left|x-2016\right|+2018}\)
A I N H A N H M I K T I C K C H O ! ! !
Mơnnhiều!
\(A=\frac{|x-2016|+2017}{|x-2016|+2018}\)
Ta thấy \(|x-2016|\ge0\forall x\)
\(\Rightarrow A=\frac{|x-2016|+2017}{|x-2016|+2018}\ge\frac{0+2017}{0+2018}\)
\(\Rightarrow A\ge\frac{2017}{2018}\)
\(\Rightarrow GTNN\)\(A=\frac{2017}{2018}\)
Giải phương trình: \frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}20162−x−1=20171−x−2018x
giúp e với ạ cảm ơn trước }
Câu 1 : a, CMR số x0=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là 1 nghiệm của pt x4-16x2+32=0
b, Cho x2016+y2016+z2016=x2017+y2017+z2017=1 Tính giá trị biểu thức P= x10+y10+z2017
Câu 2 : a, Cho m,n là 2 số tự nhiên nguyên tố cùng nhau . Hãy tìm ước chung lớn nhất của 2 số A= m+n và B= m2+n2
b,giải pt \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=10x-x^2-24\)
Câu 3 : cho các số thực dương a,b,c thảo mãn abc=1 . Tìm gtnn của bth S=\(\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)
\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)
\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)
\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(S_{min}=1\) khi \(a=b=c=1\)
GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)
\(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2+\sqrt{2+\sqrt{3}}\right)\left(2-\sqrt{2+\sqrt{3}}\right)}\)
\(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)
\(x^2=8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-\sqrt{2}\sqrt{12-6\sqrt{3}}\)
\(x^2=8-\sqrt{2}.\left(\sqrt{3}+1\right)-\sqrt{2}.\left(3-\sqrt{3}\right)\)
\(x^2=8-4\sqrt{2}\)
\(x^2-8=-4\sqrt{2}\)
\(x^4-16x^2+64=32\)
\(x^4-16x^2+32=0\)
Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)
Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
\(\Rightarrow P=1\)
Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)
\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)
TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ
TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)
\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)
Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)
Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ
Bài 1: Tìm GTLN:
A=\(\dfrac{2016}{\left|2x+1\right|+2017}\)
B=\(\dfrac{\left(x^2-4\right)^2+2016}{-2017}\)
Vì /2x+1/ ≥ 0
=> /2x+1/ + 2017 ≥ 2017
=> 2016/ /2x+1/ +2017 ≤ 2016/2017
Vậy Bmax = 2016/2017 khi /2x+1/ = 0 => 2x+1 =0 => 2x=-1
=> x = -1/2