B1 ( x^2*y + 2*y )^3
B2:(3*x - x*y^3)^3
B3:(x^2 - 1/3)*(x^4 + 1/3*x + 1/9)
B1: rut gon bieu thuc
a, (x+y)^2-4(x-y)^2
b, 2(x-y)(x+y)+(x+y)^2+(x-y)^2
B2: tim X
a, (2X-1)^2-4(X+2)^2=9
b, 3(X-1)^2-3X(X-5)=21
B3: Cho bieu thuc
M=(x+3)^3-(x-1)^3+12x(x-1)
a, Rut gon bieu thuc tren
b, Tinh gia tri M tai x=-2/3
c, Tim x de M=16
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
B1: rút gọn biểu thức
a, (x+y)^2-4(x-y)^2
b, 2(x-y)(x+y)+(x+y)^2+(x-y)^2
B2: tìm X
a, (2X-1)^2-4(X+2)^2=9
b, 3(X-1)^2-3X(X-5)=21
B3: Cho biểu thức
M=(x+3)^3-(x-1)^3+12x(x-1)
a, Rút gọn biểu thức trên
b, Tính giá trị M tại x=-2/3
c, Tìm x để M=16
Bài 2:
a: \(\Leftrightarrow4x^2-4x+1-4x^2-16x-16=9\)
=>-20x-15=9
=>-20x=24
=>x=-6/5
b: \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)
=>9x=18
=>x=2
B1. tìm x :
a. (x+3)3 -x(3x+1)2 + (2x+1).(4x2-2x+1)-3x2=42
b. 5x(x+3)2-5(x+1)3+15(x+2)(x-2)=5
B2. tìm cặp x , y
x2(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0
B1:Tìm x,y nguyên khi x+y=2 và xy-z^2=1
B2:Tìm giá trị nhỏ nhất của A=|(2/5)x -3|-4+(2/5).x
B1. tìm x :
a. (x+3)3 -x(3x+1)2 + (2x+1).(4x2-2x+1)-3x2=42
b. 5x(x+3)2-5(x+1)3+15(x+2)(x-2)=5
B2. tìm cặp x , y
x2(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0
Bài 1:
a) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=42\) (1)
\(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1-3x^2=42\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=42\)
\(\Leftrightarrow26x+28=42\)
\(\Leftrightarrow26x=42-28\)
\(\Leftrightarrow26x=14\)
\(\Leftrightarrow x=\dfrac{7}{13}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{7}{13}\right\}\)
1b) \(5x\left(x+3\right)^2-5\left(x+1\right)^3+15\left(x+2\right)\left(x-2\right)=5\Leftrightarrow5x\left(x^2+6x+9\right)-5\left(x^3+3x^2+3x+1\right)+15\left(x^2-4\right)=5\Leftrightarrow30x-65=5\Leftrightarrow30x=70\Leftrightarrow x=\dfrac{7}{3}\)
2) \(x^2\left(x+3\right)+y^2\left(y+5\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=0\Leftrightarrow x^3+3x^2+y^3+5y^2-x^3-y^3=0\Leftrightarrow3x^2+5y^2=0\)Do \(3x^2\ge0\) và \(5y^2\ge0\) => 3x2+5y2\(\ge\)0.Dấu "=" xảy ra khi x=y=0
b1 : rút gọn biểu thức
a: x-y/y^2 nhân căn y^4/x^2 - 2xy + y^2 với x khác y
b: căn x- 2 căn x +1/x+ 2 căn x +1 với x > 0
b2: rút gọn rồi tính giá trị
a: B= căn (x+2) ^4 / (3-x)^2 + x^2+1/x+3 với x<3 và tính b khi x= 0.5
b: C = 5x - căn 8 + căn x^3 + 2x^2/ căn x+2 cới x > -2 và tính C khi x + - căn 2
c: D= căn 3(x+y)^2/4 nhân 2/x^2-y^2 với x khác y
B1: 4 . ( -1/2)3 - 2. (-1/2)2 + 3 . (-1/2) + 1
B2: Tìm x, y thuộc N biết: 25 - y2 = 8(x - 2014)2
b1 Cho x+y=-1 và xy=-12 tính gt của B:
a,A=x^2+2xy+y^2
b,B=x^2+y^2
c,C=x^3+3x^2y+3xy^2+y^3
d,D=x^3+y^3
b2 cho x-y=-3 và xy=10 tínhN
M=x^2-2xy+y^2
N=x^2+y^2
P=x^3-3x^2y+3xy^2-y^3
Q=x^3-y^3
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
B1:\(\left(x+1\right)^4-3\left(x+1\right)^2-4=0\)
B2: Tìm giá trị của m để đường thẳng (d): y=mx-1 cắt (P): y=\(\dfrac{-2}{3}x^2\) tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn x1+x2=-5
1.
Đặt \(\left(x+1\right)^2=t\ge0\) ta được:
\(t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
2.
Phương trình hoành độ giao điểm:
\(-\dfrac{2}{3}x^2=mx-1\Leftrightarrow2x^2+3mx-3=0\) (1)
Do \(ac=-6< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3m}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)
\(x_1+x_2=-5\Leftrightarrow-\dfrac{3m}{2}=-5\)
\(\Leftrightarrow m=\dfrac{10}{3}\)