Tìm x biết 3*x=2*y và x3-y3=37
tìm x,y,z biết 3x-2y/4=2z-4x/3=4y-3Z/2 và x3+y3+z3=2673
Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
=>\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)
=>12x=8y=6z
=>6x=4y=3z
=>\(\frac{6x}{12}=\frac{4y}{12}=\frac{3z}{12}\)
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=>x=2k; y=3k; z=4k
\(x^3+y^3+z^3=2673\)
=>\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=2673\)
=>\(8k^3+27k^3+64k^3=2673\)
=>\(99k^3=2673\)
=>\(k^3=27=3^3\)
=>k=3
=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)
Tính giá trị biểu thức:
a) A = 2 ( x 3 + y 3 ) – 3 ( x 2 + y 2 ) biết x + y = 1;
b) B = x 3 + y 3 + 3xy biết x + y = 1.
Cho biết hai đại lượng y và x tỉ lệ nghịch với nhau :
| x | X1 = 2 | X2 = 3 | X3 = 4 | X4 = 5 |
| y | Y1 = 30 | Y2 = ? | Y3 = ? | Y4 = ? |
Tìm hệ số tỉ lệ
Ta có :
y và x là hai đại lượng tỉ lệ nghịch với nhau ⇒ y = a/x
Nên hệ số tỉ lệ a = x.y = 2.30 = 60
Tính giá trị của biểu thức
D=x3-y3-3xy biết x-y-1=0
E=x3 + y3 biết x+y=5; x2+y2=17
F=x3-y3 biết x-y=4;x2+y2=26
`#3107.101107`
`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`
Ta có:
`x - y - 1 = 0`
`=> x - y = 1`
`D = x^3 - y^3 - 3xy`
`= (x - y)(x^2 + xy + y^2) - 3xy`
`= 1 * (x^2 + xy + y^2) - 3xy`
`= x^2+ xy + y^2 - 3xy`
`= x^2 - 2xy + y^2`
`= x^2 - 2*x*y + y^2`
`= (x - y)^2`
`= 1^2 = 1`
Vậy, với `x - y = 1` thì `D = 1`
________
`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`
`x + y = 5`
`=> (x + y)^2 = 25`
`=> x^2 + 2xy + y^2 = 25`
`=> 2xy = 25 - (x^2 + y^2)`
`=> 2xy = 25 - 17`
`=> 2xy = 8`
`=> xy = 4`
Ta có:
`E = x^3 + y^3`
`= (x + y)(x^2 - xy + y^2)`
`= 5 * [ (x^2 + y^2) - xy]`
`= 5 * (17 - 4)`
`= 5 * 13`
`= 65`
Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`
________
`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`
Ta có:
`x - y = 4`
`=> (x - y)^2 = 16`
`=> x^2 - 2xy + y^2 = 16`
`=> (x^2 + y^2) - 2xy = 16`
`=> 2xy = (x^2 + y^2) - 16`
`=> 2xy = 26 - 16`
`=> 2xy = 10`
`=> xy = 5`
Ta có:
`F = x^3 - y^3`
`= (x - y)(x^2 + xy + y^2)`
`= 4 * [ (x^2 + y^2) + xy]`
`= 4 * (26 + 5)`
`= 4*31`
`= 124`
Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`
Tìm x,y biết :
x3 y = x y3 + 1997
Sửa đề: Tìm x,y nguyên biết
Ta có: \(x^3y=xy^3+1997\)
=>\(x^3y-xy^3=1997\)
=>\(xy\left(x^2-y^2\right)=1997\)
=>xy(x-y)(x+y)=1997
Đặt A=xy(x-y)(x+y)
TH1: x chẵn; y chẵn
=>xy chẵn
=>xy(x-y)(x+y)⋮2
=>A⋮2(1)
TH2: x chẵn, y lẻ
=>xy chẵn
=>xy(x-y)(x+y)⋮2
=>A⋮2(2)
TH3: x lẻ; y chẵn
=>xy chẵn
=>A=xy(x-y)(x+y)⋮2(3)
TH4: x lẻ; y lẻ
=>x+y chẵn
=>(x+y)(x-y)xy⋮2
=>A⋮2(4)
Từ (1),(2),(3),(4) suy ra A⋮2
mà A=1997
và 1997 không chia hết cho 2
nên (x;y)∈∅
a)cho x+y=3 và x2+y2=5.Tính x3+y3
b)x-y=5 và x2+y2=15.Tính x3-y3
a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)
b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)
\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)
Tính giá trị biểu thức:
C = 3(x3 - y3) - 3(x + y)2 biết: x - y = 2.
C=3[(x-y)^3+3xy(x-y)]-3[(x-y)^2+4xy]
=3(2^3+6xy)-3(4+4xy)
=24+18xy-12-12xy
=6xy+12
tìm x,y,zbiết : 3x-2y /4 =2z-4x/3 =4y-3z/2 và x3 +y3 +z3 =2673
Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
=>\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)
=>12x-8y=0 và 6z-12x=0 và 8y-6z=0
=>12x=8y=6z
=>\(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=>x=2k; y=3k; z=4k
\(x^3+y^3+z^3=2673\)
=>\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=2673\)
=>\(8k^3+27k^3+64k^3=2673\)
=>\(99k^3=2673\)
=>\(k^3=27=3^3\)
=>k=3
=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)
Phân tích các đa thức sau thành nhân tử:
a) x3+y3+x+y
b) x3−y3+x−y
c) (x−y)3+(x+y)3
d) x3−3x2y+3xy2−y3+y2−x2
`a, x^3 + y^3 + x + y`
`= (x+y)(x^2-xy+y^2)+x+y`
`= (x+y)(x^2-xy+y^2+1)`
`b, x^3 - y^3 + x -y`
`= (x-y)(x^2+xy+y^2)+x-y`
`= (x-y)(x^2+xy+y^2+1)`
`c, (x-y)^3 + (x+y)^3`
`= (x-y+x+y)(x^2-2xy+y^2 - x^2 + y^2 + x^2 + 2xy + y^2)`
`= (2x)(x^2 + 3y^2)`
`d, x^3 - 3x^2y + 3xy^2 - y^3 + y^2 - x^2`
`= (x-y)^3 + (y-x)(x+y)`
`=(x-y)(x^2+2xy+y^2-x-y)`
a: =(x+y)(x^2-xy+y^2)+(x+y)
=(x+y)(x^2-xy+y^2+1)
b: =(x-y)(x^2+xy+y^2)+(x-y)
=(x-y)(x^2+xy+y^2+1)
c: =x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2-y^3
=2x^3+6xy^2
d: =(x-y)^3+(y-x)(y+x)
=(x-y)[(x-y)^2-(x+y)]
Tìm x,y là số nguyên biết
c) x3 -y3=xy^3+4
d) x2y-3x+y=-2