Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn Vương Gia BẢO
Xem chi tiết

Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

=>\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

=>12x=8y=6z

=>6x=4y=3z

=>\(\frac{6x}{12}=\frac{4y}{12}=\frac{3z}{12}\)

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=>x=2k; y=3k; z=4k

\(x^3+y^3+z^3=2673\)

=>\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=2673\)

=>\(8k^3+27k^3+64k^3=2673\)

=>\(99k^3=2673\)

=>\(k^3=27=3^3\)

=>k=3

=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 5 2017 lúc 7:33

a) A = -1;                        b) B = ( x   +   y ) 3  =1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 8 2019 lúc 11:44

Ta có :

y và x là hai đại lượng tỉ lệ nghịch với nhau ⇒ y = a/x

Nên hệ số tỉ lệ a = x.y = 2.30 = 60

Kwalla
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
3 tháng 10 2023 lúc 5:19

`#3107.101107`

`D = x^3 - y^3 - 3xy` biết `x - y - 1 = 0`

Ta có:

`x - y - 1 = 0`

`=> x - y = 1`

`D = x^3 - y^3 - 3xy`

`= (x - y)(x^2 + xy + y^2) - 3xy`

`= 1 * (x^2 + xy + y^2) - 3xy`

`= x^2+ xy + y^2 - 3xy`

`= x^2 - 2xy + y^2`

`= x^2 - 2*x*y + y^2`

`= (x - y)^2`

`= 1^2 = 1`

Vậy, với `x - y = 1` thì `D = 1`

________

`E = x^3 + y^3` với `x + y = 5; x^2 + y^2 = 17`

`x + y = 5`

`=> (x + y)^2 = 25`

`=> x^2 + 2xy + y^2 = 25`

`=> 2xy = 25 - (x^2 + y^2)`

`=> 2xy = 25 - 17`

`=> 2xy = 8`

`=> xy = 4`

Ta có:

`E = x^3 + y^3`

`= (x + y)(x^2 - xy + y^2)`

`= 5 * [ (x^2 + y^2) - xy]`

`= 5 * (17 - 4)`

`= 5 * 13`

`= 65`

Vậy, với `x + y = 5; x^2 + y^2 = 17` thì `E = 65`

________

`F = x^3 - y^3` với `x - y = 4; x^2 + y^2 = 26`

Ta có:

`x - y = 4`

`=> (x - y)^2 = 16`

`=> x^2 - 2xy + y^2 = 16`

`=> (x^2 + y^2) - 2xy = 16`

`=> 2xy = (x^2 + y^2) - 16`

`=> 2xy = 26 - 16`

`=> 2xy = 10`

`=> xy = 5`

Ta có:

`F = x^3 - y^3`

`= (x - y)(x^2 + xy + y^2)`

`= 4 * [ (x^2 + y^2) + xy]`

`= 4 * (26 + 5)`

`= 4*31`

`= 124`

Vậy, với `x - y = 4; x^2 + y^2 = 26` thì `F = 124.`

BÍCH THẢO
Xem chi tiết

Sửa đề: Tìm x,y nguyên biết

Ta có: \(x^3y=xy^3+1997\)

=>\(x^3y-xy^3=1997\)

=>\(xy\left(x^2-y^2\right)=1997\)

=>xy(x-y)(x+y)=1997

Đặt A=xy(x-y)(x+y)

TH1: x chẵn; y chẵn

=>xy chẵn

=>xy(x-y)(x+y)⋮2

=>A⋮2(1)

TH2: x chẵn, y lẻ

=>xy chẵn

=>xy(x-y)(x+y)⋮2

=>A⋮2(2)

TH3: x lẻ; y chẵn

=>xy chẵn

=>A=xy(x-y)(x+y)⋮2(3)

TH4: x lẻ; y lẻ

=>x+y chẵn

=>(x+y)(x-y)xy⋮2

=>A⋮2(4)

Từ (1),(2),(3),(4) suy ra A⋮2

mà A=1997

và 1997 không chia hết cho 2

nên (x;y)∈∅

Nguyệt Huyết Hắc Bạch
Xem chi tiết
Lê Song Phương
29 tháng 8 2023 lúc 7:04

 a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)

 b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)

\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)

Toru
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 20:41

C=3[(x-y)^3+3xy(x-y)]-3[(x-y)^2+4xy]

=3(2^3+6xy)-3(4+4xy)

=24+18xy-12-12xy

=6xy+12

Nguyễn Bá Minh Nhật
Xem chi tiết

Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)

=>\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

=>12x-8y=0 và 6z-12x=0 và 8y-6z=0

=>12x=8y=6z

=>\(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=>x=2k; y=3k; z=4k

\(x^3+y^3+z^3=2673\)

=>\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=2673\)

=>\(8k^3+27k^3+64k^3=2673\)

=>\(99k^3=2673\)

=>\(k^3=27=3^3\)

=>k=3

=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)

Buddy
Xem chi tiết
Vui lòng để tên hiển thị
21 tháng 7 2023 lúc 15:40

`a, x^3 + y^3 + x + y`

`= (x+y)(x^2-xy+y^2)+x+y`

`= (x+y)(x^2-xy+y^2+1)`

`b, x^3 - y^3 + x -y`

`= (x-y)(x^2+xy+y^2)+x-y`

`= (x-y)(x^2+xy+y^2+1)`

`c, (x-y)^3 + (x+y)^3`

`= (x-y+x+y)(x^2-2xy+y^2 - x^2 + y^2 + x^2 + 2xy + y^2)`

`= (2x)(x^2 + 3y^2)`

`d, x^3 - 3x^2y + 3xy^2 - y^3 + y^2 - x^2`

`= (x-y)^3 + (y-x)(x+y)`

`=(x-y)(x^2+2xy+y^2-x-y)`

Nguyễn Lê Phước Thịnh
21 tháng 7 2023 lúc 15:40

a: =(x+y)(x^2-xy+y^2)+(x+y)

=(x+y)(x^2-xy+y^2+1)

b: =(x-y)(x^2+xy+y^2)+(x-y)

=(x-y)(x^2+xy+y^2+1)

c: =x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2-y^3

=2x^3+6xy^2

d: =(x-y)^3+(y-x)(y+x)

=(x-y)[(x-y)^2-(x+y)]

TĐLT
Xem chi tiết