\(A=\frac{x-2}{3x-2}\)
tìm x để
a) A=0
b)A<0
cho hệ phương trình: \(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
khi hệ phương trình có nghiệm duy nhất là (x,y) tìm m để
a) x>0 và y<0
b) biểu thức A = x^2 + y^2 đạt GTNN
a: Vì \(\dfrac{1}{2}\ne-\dfrac{2}{1}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6\left(m+2\right)=6m+12\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=3-m+6m+12=5m+15\\x-2y=3-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+3\\2y=x-3+m=m+3-3+m=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
Để x>0 và y<0 thì \(\left\{{}\begin{matrix}m+3>0\\m< 0\end{matrix}\right.\)
=>-3<m<0
b: \(A=x^2+y^2=\left(m+3\right)^2+m^2\)
\(=2m^2+6m+9\)
\(=2\left(m^2+3m+\dfrac{9}{2}\right)\)
\(=2\left(m^2+3m+\dfrac{9}{4}+\dfrac{9}{4}\right)\)
\(=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall m\)
Dấu '=' xảy ra khi \(m+\dfrac{3}{2}=0\)
=>\(m=-\dfrac{3}{2}\)
Bài 1: tìm x
a, (3x-5)2 - (x-1)2 = 0
b, 16(2-3x) + x2(3x-2) =0
Bài 2:
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a, (3x-5)^2 - (x-1)^2 = 0
(3x-5-x+1)(3x-5+x-1) =0
(2x-4)(4x-6)=0
Do đó: 2x-4=0 hoặc 4x-6=0
Th1: 2x-4=0 => 2x=4
=> x=2
Th2: 4x-6=0 => 4x=6
=> x = 4/6 =2/3
Vậy x = 2 ; 2/3
cho cả biểu thức A =\(\frac{2x-1}{x+3}\)va B =\(\frac{2}{x^2-9}\)
a;tìm x đểA= \(\frac{3}{2}\)
b; tìm x để \(\frac{A}{B}\)< \(^{x^2+5}\)
Tìm x biết :
a/ ( x +1 )^2 - 3 ( x + 1 ) = 0
b/ 2 ( 3x - 2 )^2 = 9x^2 - 4
a: Ta có: \(\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b: Ta có: \(2\left(3x-2\right)^2=9x^2-4\)
\(\Leftrightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(6x-4-3x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
TÌM X BIẾT :
a/ 3x ( 3x -1 ) - ( 3x + 1 ) ( 3x - 1 ) = 0
b/ \(x^2\) - 5x + 25 - 5x = 0
KHÔNG BỎ BƯỚC Ạ !
a: Ta có: \(3x\left(3x-1\right)-\left(3x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow9x^2-3x-9x^2+1=0\)
\(\Leftrightarrow3x=1\)
hay \(x=\dfrac{1}{3}\)
b: Ta có: \(x^2-5x+25-5x=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
hay x=5
A=\((1+\frac{x^2}{x^2+1})\): \((\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1})\)
a, Rút gọn A
b, A=? khi x=\(\frac{-1}{2}\)
c, x=? đểA<1
d, Tìm x\(\varepsilon\)Z để A \(\varepsilon Z\)
Cho bt: M=3x-2
a) Tìm gt của biến x để M=0
b) Cho bt: A=( x^2 - 3x ) - (3x - 9 ) +5
Cm A luôn dương với mọi gt của biến x
\(a,M=3x-2=0\\ \Rightarrow3x=2\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(b,A=\left(x^2-3x\right)-\left(3x-9\right)+5\\ =x^2-3x-3x+9+5\\ =x^2-6x+14\\ =\left(x^2-6x+9\right)+5\\ =\left(x-3\right)^2+5\ge5>0\forall x\)
Suy ra A luôn dương với mọi biến của `x`
Tìm x
a) 4x(x+1)-x-1 = 0
b) x3-4x2+4x =0
c) x2-3x + 2 =0
tham khảo: https://hoc24.vn/cau-hoi/.2256230161739
a) ⇔ \(4x^2+4x-x-1=0\)
⇔ \(4x^2+3x-1=0\)
⇔ \(4x(x+1)-(x+1)=0\)
⇔ \((x+1)(4x-1)=0\)
⇒ \(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy...
b) \(x^3-4x^2+4x=0\)
⇔ \(x^2(x-2)-2x(x-2)=0\)
⇔ \((x-2)(x^2-2x)=0\)
⇒ \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy...
c) \(x^2-3x+2=0\)
⇔ \(x(x-2)-(x-2)=0\)
⇔ \((x-1)(x-2)=0\)
⇒ \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
tìm x biết
a x^2 (2x+15)+4(2x+15)=0
b 5x(x-2)-3(x-2)=0
c 2(x+3)-x^2-3x=0
a
\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)
b
\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)
c
\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)
a: =>(2x+15)(x^2+4)=0
=>2x+15=0
=>2x=-15
=>x=-15/2
b; =>(x-2)(5x-3)=0
=>x=2 hoặc x=3/5
c: =>(x+3)(2-x)=0
=>x=2 hoặc x=-3
Tìm x: (giải chi tiết một tí đc k?)
a) (3x-2)(2x-1)-(6x2-3x)=0
b) x3-(x+1)(x2-x+1)=x
a: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)
\(\Leftrightarrow6x^2-3x-4x+2-6x^2+3x=0\)
\(\Leftrightarrow-4x=-2\)
hay \(x=\dfrac{1}{2}\)
b: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)
\(\Leftrightarrow x=x^3-x^3-1\)
hay x=-1