$\frac{x}{3}=\frac{y}{2}và2x-5y=-32$
\(\frac{x}{3}=\frac{y}{2}và2x-5y=-32\)ai nhanh mình tick cho
\(\frac{x}{3}=\frac{y}{2}=\frac{2x}{6}=\frac{5y}{10}=\frac{2x-5y}{6-10}=\frac{-32}{-4}=8\)
\(\Rightarrow\hept{\begin{cases}x=24\\y=16\end{cases}}\)
x/3=y/2 nên 2x=3y
Ta có:
2x-5y=-32
3y-5y=-32
-2y=-32
y=16
suy ra: x=24
\(1.\frac{x}{3}=\frac{y}{4}vàx+y=14\)
\(2.\frac{x}{5}=\frac{y}{3}vàx-y=20\)
\(3.\frac{x}{7}=\frac{y}{4}vàx-y=30\)
\(4.\frac{x}{5}=\frac{y}{7}vàx-y=48\)
\(5.\frac{x}{3}=\frac{y}{6}vàx+y=90\)
\(6.\frac{x}{-2}=\frac{y}{5}vàx+y=12\)
\(7.\frac{x}{4}=\frac{y}{-7}vàx-y=33\)
\(8.\frac{x}{3}=\frac{y}{2}và2x+5y=32\)
\(9.\frac{x}{5}=\frac{y}{2}và3x-2y=44\)
\(10.\frac{x}{3}=\frac{y}{5}và2x+4y=28\)
Tìm x, y biết
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
Tìm x, y, z biết:
a)\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}và5x+y-2z=28\)
b)\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}và2x-3y+z=6\)
c)\(2x=3y;5y=7zvà3x+5y-7z=30\)
d)\(\frac{3x}{4}=\frac{4y}{5}=\frac{5z}{6}và3x+5y-7z=2\)
e)\(4x=6y=9zvàx+y-z=33\)
f)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}và2x+3y-z=50\)
GỢI Ý: DỰA VÀ TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU.
\(\Rightarrow\frac{5x}{5.10}=\frac{y}{6}=\frac{2z}{2.21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
\(\Rightarrow\frac{5x}{50}+\frac{y}{6}-\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow x=2.10=20\)
\(y=2.6=12\)
\(z=2.21=41\)
Tìm x,y,z khi:
1,\(\frac{x}{7}=\frac{y}{3}vàx-24=y\)
2,\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}và,y-x=48\)
3,\(\frac{x-1}{2005}=\frac{3-y}{2006}và,x-y=4009\)
4,\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vã-y-z=28\)
5,\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}và2x+3y-z=-14\)
6,\(3x=y;5y=4zvà6x+7y+8z\)
Tìm x,y,z biết:
a) 2x = 3y ; 5y 7z và 3x - y + 4z = - 10
b) \(\frac{x-7}{8}=\frac{y-8}{9}=\frac{z-9}{10}và2x-y+3z=20\)
a) \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{y}{14}=\frac{4z}{40}=\frac{3x-y+4z}{63-14+40}=\frac{-10}{89}\)
\(\Rightarrow\frac{x}{21}=\frac{-10}{89}\Rightarrow x=\frac{-210}{89};\frac{y}{14}=\frac{-10}{89}\Rightarrow y=\frac{-140}{89};\frac{z}{10}=\frac{-10}{89}\Rightarrow z=\frac{-100}{89}\)
b)\(\frac{x-7+7}{8+7}=\frac{y-8+8}{9+8}=\frac{z-9+9}{10+9}=\frac{x}{15}=\frac{y}{17}=\frac{z}{19}=\frac{2x}{30}=\frac{y}{17}=\frac{3z}{57}=\frac{20}{70}=\frac{2}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{2}{7}\Rightarrow x=\frac{30}{7};\frac{y}{17}=\frac{2}{7}\Rightarrow y=\frac{34}{7};\frac{z}{19}=\frac{2}{7}\Rightarrow z=\frac{38}{7}\)
Tìm các số x,y,z, biết:
a,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}vàx-y+z=-15\)
b,\(\frac{x}{4}=\frac{9}{3}=\frac{z}{9}vàx-3y+4z=62\)
c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}và2x+5y-2z=100\)
Theo đề ta có:
\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)
=> \(\frac{x}{9}=\frac{y}{7};\frac{y}{7}=\frac{z}{3}\)
Hay: \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
=> \(\frac{x}{9}=-3\)
\(\frac{y}{7}=-3\)
\(\frac{z}{3}=-3\)
=> x = -27
y = -21
x= -9
Bạn kiểm tra lại thử giúp mình nha! mấy bài sau bạn làm tương tự, nhớ tick đúng cho mình nha! Cảm ơn bạn!
Theo đề ra ta cs
\(+,\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\)(1)
\(+,\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-3\\\frac{y}{7}=-3\\\frac{z}{3}=-3\end{cases}\Rightarrow\hept{\begin{cases}x=-27\\y=-21\\z=-9\end{cases}}}\)
A)\(\frac{x}{7}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}và2x+5y-2z=180\)
B)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}zva\) \(x+y+z=-120\)
C)\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)và \(x.y.z=20\)
D)\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) và \(x^2+y^2+z^2=585\)
Tìm x,y,z
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}và2x+3y-z=50\)
\(\frac{x}{-2}=\frac{y}{7}=\frac{z}{3}và2x+3y-4z=25\)
ta có: \(\frac{x}{-2}=\frac{y}{7}=\frac{z}{3}=\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}\)
ADTCDTSBN
có: \(\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}=\frac{2x+3y-4z}{-4+21-12}=\frac{25}{5}=5\)
\(\Rightarrow\frac{x}{-2}=5\Rightarrow x=-10\)
\(\frac{y}{7}=5\Rightarrow y=35\)
\(\frac{z}{3}=5\Rightarrow z=15\)
KL: x = -10; y = 35; z = 15
\(\frac{x}{-2}=\frac{y}{7}=\frac{z}{3}\)
\(\Leftrightarrow\)\(\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}=\frac{2x+3y-4z}{-4+21-12}=\frac{25}{5}=5\)
Do đó :
\(\frac{x}{-2}=5\)\(\Rightarrow\)\(x=5.\left(-2\right)=-10\)
\(\frac{y}{7}=5\)\(\Rightarrow\)\(y=5.7=35\)
\(\frac{z}{3}=5\)\(\Rightarrow\)\(z=5.3=15\)
Vậy \(x=-10\)\(;\)\(y=35\) và \(z=15\)
Chúc bạn học tốt ~
\(\frac{x}{-2}=\frac{y}{7}=\frac{z}{3}=\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{-4}=\frac{3y}{21}=\frac{4z}{12}=\frac{2x+3y-4z}{-4+21-12}=\frac{25}{5}=5\)
\(\Rightarrow\frac{2x}{-4}=5\Rightarrow x=-10\)
\(\frac{3y}{21}=5\Rightarrow y=35\)
\(\frac{4z}{12}=5\Rightarrow z=15\)
KL:.....................................