Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Melanie Granger
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Đặng Ngọc Quỳnh
23 tháng 5 2021 lúc 18:52

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
30 tháng 4 2020 lúc 21:02

\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)

\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)

Áp dụng BĐT Cosi ta có:

\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)

Từ (1)(2)(3) ta có:

\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)

Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)

Dấu "=" xảy ra <=> a=b=c=1

Khách vãng lai đã xóa
Kamado Tanjiro
3 tháng 5 2020 lúc 7:25

CHÚC BAN HỌC GIỎI

Khách vãng lai đã xóa
Phạm Bảo Nam
4 tháng 5 2020 lúc 16:20

đây\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Khách vãng lai đã xóa
Vanh237
Xem chi tiết
t. oanh
23 tháng 5 2021 lúc 21:18

Ta có: P= \(2a+3b+\dfrac{1}{a}+\dfrac{4}{b}\) = \(\text{​​}\text{​​}(\dfrac{1}{a}+a)+\left(\dfrac{4}{b}+b\right)+\left(a+2b\right)\)

Ta thấy: \(\text{​​}\text{​​}(\dfrac{1}{a}+a)\ge2\sqrt{\dfrac{1}{a}\cdot a}=2\)

             \(\text{​​}\text{​​}\left(\dfrac{4}{b}+b\right)\ge2\sqrt{\dfrac{4}{b}\cdot b}=4\)

Do đó: P \(\ge2+4+8=14\)

Vậy: P(min)=14  khi:  \(\left\{{}\begin{matrix}\dfrac{1}{a}=a\\\dfrac{4}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right..\)

t. oanh
23 tháng 5 2021 lúc 21:19

sorry, nhầm đề

 

t. oanh
23 tháng 5 2021 lúc 21:23

làm lại:

Ta có: P= \(2a+3b+\dfrac{4}{a}+\dfrac{9}{b}\) = \(\text{​​}\text{​​}(\dfrac{4}{a}+a)+\left(\dfrac{9}{b}+b\right)+\left(a+2b\right)\)

Ta thấy: \(\text{​​}\text{​​}(\dfrac{4}{a}+a)\ge2\sqrt{\dfrac{4}{a}\cdot a}=4\)

             \(\text{​​}\text{​​}\left(\dfrac{9}{b}+b\right)\ge2\sqrt{\dfrac{9}{b}\cdot b}=6\)

Do đó: P \(\ge4+6+8=18\)

Vậy: P(min)=18  khi:  \(\left\{{}\begin{matrix}\dfrac{4}{a}=a\\\dfrac{9}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\cdot\)

Hoa Nguyễn
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 11 2020 lúc 20:51

Bài làm

\(P=2a+3b+\frac{4}{a}+\frac{9}{b}=a+a+2b+b+\frac{4}{a}+\frac{9}{b}\)

\(=\left(a+2b\right)+\left(a+\frac{4}{a}\right)+\left(b+\frac{9}{b}\right)\)

\(\ge8+2\sqrt{a\times\frac{4}{a}}+2\sqrt{b\times\frac{9}{b}}\)( Cauchy )

\(=8+4+6=18\)

Đẳng thức xảy ra khi a = 2 ; b = 3

=> MinP = 18 <=> a = 2 ; b = 3

Khách vãng lai đã xóa
kudo shinichi
15 tháng 4 2019 lúc 21:03

\(P=2a+3b+\frac{4}{a}+\frac{9}{b}\)

\(\Leftrightarrow P=\left(a+\frac{4}{a}\right)+\left(b+\frac{9}{b}\right)+a+2b\)

Áp dụng BĐT AM-GM ta có:

\(P\ge2.\sqrt{a.\frac{4}{a}}+2.\sqrt{b.\frac{9}{b}}+a+2b=2.2+2.3+a+2b\ge4+6+8=18\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a=\frac{4}{a}\\b=\frac{9}{b}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)

Vậy \(P_{min}=18\)\(\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)

Bui Huyen
15 tháng 4 2019 lúc 21:10

\(P=a+2b+a+\frac{4}{a}+b+\frac{9}{b}\)

Áp dụng cô si ta có:

\(a+\frac{4}{a}\ge4\)

\(b+\frac{9}{b}\ge6\)

\(\Rightarrow P\ge4+6+8\Rightarrow P\ge18\)

dấu "=" xảy ra khi a=2,b=3

Admin (a@olm.vn)
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
Đào Thu Hoà
6 tháng 6 2019 lúc 20:20

Cách làm dài bạn thông cảm mình  nghĩ được có zậy thui ak :/

Ta có a, b là các số thực dương 

Từ \(a+3b=ab\Leftrightarrow\frac{1}{b}+\frac{3}{a}=1\ge2\sqrt{\frac{3}{ab}}.\)(bất đẳng thức Cauchy cho 2 số không âm)

\(\Leftrightarrow\frac{12}{ab}\le1\Leftrightarrow ab\ge12\)\(\Leftrightarrow84ab-72ab\ge144\Leftrightarrow84ab\ge72\left(ab+2\right)\)

\(\Leftrightarrow\frac{12ab}{ab+2}\ge\frac{72}{7}\left(1\right)\)

Ta có \(P=\frac{a^2}{1+3b}+\frac{9b^2}{1+a}\ge2\sqrt{\frac{a^2}{1+3b}\frac{9b^2}{1+a}}=\frac{6ab}{\sqrt{\left(1+a\right)\left(1+3b\right)}}\)(Bất đẳng thức Cauchy)

                                                      \(\ge\frac{6ab}{\frac{1+a+1+3b}{2}}=\frac{12ab}{a+3b+2}=\frac{12ab}{ab+2}\)(Bất đẳng thức Cauchy ngược dấu )

Kết hợp với (1) ta được :

\(P\ge\frac{12ab}{ab+2}\ge\frac{72}{7}.\)

Vậy giá trị nhỏ nhất của \(P=\frac{72}{7}\Leftrightarrow\hept{\begin{cases}a=3b\\a+3b=ab\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=2\end{cases}.}}\)

tnt
Xem chi tiết
Yen Nhi
8 tháng 2 2023 lúc 13:18

Theo đề ra, ta có:

\(a^2+b^2+c^2\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

Theo BĐT Cô-si:

\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)

Ta đặt \(a^2+b^2+c^2=k\)

Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

Vì thế nên \(k\ge\dfrac{1}{3}\)

Khi đấy:

\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)

\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).

Trần Thị Khánh Ly
Xem chi tiết
Kiệt Nguyễn
28 tháng 5 2020 lúc 18:05

Ta có: \(\frac{1+3a}{1+b^2}=\left(1+3a\right).\frac{1}{1+b^2}=\left(1+3a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+3a\right)\left(1-\frac{b^2}{2b}\right)=\left(1+3a\right)\left(1-\frac{b}{2}\right)\)

\(=3a+1-\frac{b}{2}-\frac{3ab}{2}\)(1)

Tương tự ta có: \(\frac{1+3b}{1+c^2}=3b+1-\frac{c}{2}-\frac{3bc}{2}\)(2); \(\frac{1+3c}{1+a^2}=3c+1-\frac{a}{2}-\frac{3ca}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)\(\ge3\left(a+b+c\right)-\frac{a+b+c}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(=\frac{5\left(a+b+c\right)}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(\ge\frac{5.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{3.3}{2}+3=\frac{15}{2}-\frac{9}{2}+3=6\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa