Tìm x để
a) A= x^3 - x^2 + 3x - 3 mà A>0
b) B= x^4 + x^2 + 9x -9 mà B<0
Tìm x biết :
a/ ( x +1 )^2 - 3 ( x + 1 ) = 0
b/ 2 ( 3x - 2 )^2 = 9x^2 - 4
a: Ta có: \(\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b: Ta có: \(2\left(3x-2\right)^2=9x^2-4\)
\(\Leftrightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(6x-4-3x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
Tìm x, biết :
a) (x-2)3 +6(x+1)2-x3+12=0
b) (x-5) (x+5) - (x+3)2+3(x-2)2=(x+1)2- (x+4)(x-4)+3x2
c) (2x+3)2 +(x-1)(x+1)=5(x+2)2-(x-5)(x+1)+(x+4)
d) (1-3x)2-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)2
Giúp mk với ạ, mk cảm ơn !
a) (x-2)3+6(x+1)2-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0
\(\Rightarrow\)24x+10=0
\(\Rightarrow\)24x=-10
\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)
b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2
\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2
\(\Rightarrow\)x2-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2
\(\Rightarrow\)3x2-18x-22=3x2+2x+17
\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0
\(\Rightarrow\)-20x-39=0
\(\Rightarrow\)-20x=39
\(\Rightarrow\)x=\(-\dfrac{39}{20}\)
c) (2x+3)2 +(x-1)(x+1)=5(x+2)2-(x-5)(x+1)+(x+4)
⇒4x2+12x+9+x2-1=5(x2+4x+4)-(x2+x-5x-5)+x+4
⇒5x2+12x+8=5x2+20x+20-x2-x+5x+5+x+4
⇒5x2+12x+8-5x2-20x-20+x2+x-5x-5-x-4=0
⇒x2-13x-21=0
A= [(9/x^3-9x)+(1/x+3)]:[(x-3/x^2+3x)-(x/3x+9)]
a).Tìm x để bthuc A có nghĩa. rút gọn A
b). Tính giá trị biểu thức khi x=2
c) Tìm x để A=-1
d). Tìm x để giá trị của A nguyên
tìm x
a)x^4-2x^3-25x^2+50x=0
b)x^2(x-1)-4x^2+8x-4=0
c)9x^2-4-2(3x-2)^2=0
d)9x^2+90x+225-(x-7)^2=0
e)x^3-8+(x-2)(x+1)=0
g)(x+1)(x+2)(x+3)(x+4)-24=0
giúp mk vs ah
I, thực hiện phép tính:
a,( 9/ x^3 - 9x + 1/ x+3) : (x-3/ x^2+3x -x/3x+9x)
b, (3x/1-3x +2x/ 3x+1) : (6x^2+10x/1-6x+9x^2)
c, a^2-b^2/ a^2 * a^4 / (a+b)^2
d,( 3-3x/ (1+ x )^2 : (6x^2- 6 / x+1)
e, x^2 -1/x+10 * x/ x+2 + x^2-1/ x+10 * 1- x/x -2
II, tìm ĐKXĐ của các phân thức sau:
a, x^2-4/ 9x^2- 16
b, 2x-1/ x^2 -4x +4
c, x^2 -4/ x^2+1
d, 5x-3/ 2x^2 -x
cần gấp chiều 2h đi học
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
c, ĐK: \(0\le x\le9\)
Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)
\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)
\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)
\(\Leftrightarrow-t^2+2t+9=m\)
Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)
Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm
\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)
Tìm x: a) (x+1)^3-x(x-2)^+x-1=0
b) (x-1)^3 - (x+3)(x^2-3x+9)+3(x^2-4)=2
Tính: (căn 2 x - y^2)
a: (x+1)^3-x(x-2)^2+x-1=0
=>x^3+3x^2+3x+1-x(x^2-4x+4)+x-1=0
=>x^3+3x^2+4x-x^3+4x^2-4x=0
=>7x^2=0
=>x=0
b: =>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x=2+1+27+12=39+3=42
=>x=14
cho 2 đa thức
a(x)=x^5-2x^3+3x^4-9x^2+11x-6
b(x)=3x^4+x^5-2(x^3+4)-10x^2+9x
a,tính c(x)=a(x)-b(x)
b,tìm x để c(x)=2x+1
c, chứng tỏ rằng c(x) ko thể nhận giá trị bằng 2012 với mọi giá trị của x thuộc Z
a. Ta có \(a\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)
\(b\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)
\(\Rightarrow c\left(x\right)=a\left(x\right)-b\left(x\right)=x^2+2x+2\)
b. \(c\left(x\right)=2x+1\Rightarrow x^2+2x+2=2x+1\Rightarrow x^2+1=0\)(vô lí )
Vậy không tồn tại x để \(c\left(x\right)=2x+1\)
c. Gỉa sử \(x^2+2x+2=2012\Rightarrow x^2+2x-2010=0\)
\(\Rightarrow\orbr{\begin{cases}x_1=-1+\sqrt{2011}\\x_2=-1-\sqrt{2011}\end{cases}}\)
Ta thấy \(x_1;x_2\in R\)
Vậy c(x) không thể nhận giá trị bằng 2012 với \(x\in Z\)
Bài 1: Tìm x , Biết
a) (x-4) x - (x-3)^2=0
b) 3x-6 = x^2-16
c) (2x-3)^2 - 49=0
d) 2x (x-5) - 7 (5-x)=0
Bài 2: Tìm m để đa thức
A(x)= 2x^3 + x^2 - 4x + m chia hết cho đa thức B(x)= 2x-1
Bài 3 : Phân tích đa thức thành nhân tử
a) x^2 - 8x
b) x^2 - xy - 6x + 6y
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)