Phân tích các đa thức thành nhân tử
a) 1 + 2xy - x2 - y2
b) a2 + b2 - c2 - d2 - 2ab +2cd
Phân tích đa thức thành nhân tử
a( b2 + c2 ) +b( c2 + a2 ) + c( a2 + b2 ) - 2abc - a3 - b3 - c3
\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
\(=c\left(a-b\right)^2+\left[ab^2+ac^2+a^2b+bc^2-a^3-b^3-c^3\right]\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)+ab^2+a^2b-a^3-b^3\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a^3-a^2b\right)+\left(ab^2-b^3\right)\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-a^2\left(a-b\right)+b^2\left(a-b\right)\)
\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a+b\right)\left(a-b\right)^2\)
\(=-\left(a-b\right)^2\left(a+b-c\right)+c^2\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)
Phân tích đa thức thành nhân tử
a)A=x2+7x+7y-y2
b)B=x2+2xy+y2-3x-3y
\(a,A=x^2+7x+7y-y^2\\ =x^2-y^2+7x+7y\\ =\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\\ =\left(x+y\right)\left(x-y+7\right)\)
\(b,B=x^2+2xy+y^2-3x-3y\\ =\left(x+y\right)^2-3\left(x+y\right)\\ =\left(x+y\right)\left(x+y-3\right)\)
phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức:
a) ( 4x^2 -3x -18 )^2 - ( 4x^2 +3x)^2
b) [ 4abcd +( a2+ b2) ( c2 +d2) ]2 -4[ cd (a2 + b2) +ab (c2 + d2)]2
Phân tích đa thức thành nhân tử
A= x2+7x+7y-y2
B= 4x3-4x2+x
C= x2+9y2-9-6xy
\(A=x^2-y^2+7x+7y\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+7\right)\)
\(B=4x^3-4x^2+x\)
\(=x\left(4x^2-4x+1\right)\)
\(=x\left(2x-1\right)^2\)
\(C=x^2-6xy+9y^2-9\)
\(=\left(x-3y\right)^2-9\)
\(=\left(x-3y-3\right)\left(x-3y+3\right)\)
A=\(x^2+7x+7y-y^2=\left(x^2-y^2\right)+\left(7x+7y\right)=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)=\left(x+y\right)\left(x-y+7\right)\)
B=\(4x^3-4x^2+x=x\left(4x^2-4x+1\right)=x\left(2x-1\right)^2\)
C=\(x^2+9y^2-9-6xy=\left(x^2-6xy+9y^2\right)-9=\left(x-3y\right)^2-3^2=\left(x-3y-3\right)\left(x-3y+3\right)\)
Bài 2 Phân tích thành nhân tử
a) 3x2 – 7x – 10
b) x2 + 6x +9 – 4y2
c) x2 – 2xy + y2 – 5x + 5y’
d) 4x2 – y2 – 6x + 3y
e) 1 – 2a + 2bc + a2 – b2 – c2
f) x3 – 3x2 – 4x + 12
g) x4 + 64
h) x4 – 5x2 + 4
i) (x+1)(x+3)(x+5)(x+7) + 16
j) (x2 + 6x +8)( x2 + 14x + 48) – 9
k) ( x2 – 8x + 15)(x2 – 16x + 60) – 24x2
l) 4( x2 + 15x + 50)(x2 +18x +72) – 3x2
Bài 3 tìm gtnn
A = 9x2 – 6x + 2
B = 4x2 + 5x + 10
C = x2 – x + 10
D = 4x2 + 3x + 20
E = x2 + y2 – 6xy + 10y + 35
F= x2 + y2 – 6x + 4y +2
M= 2x2 + 4y2 – 4xy – 4x – 4y +2021
Bài 2:
a) \(3x^2-7x-10=\left(x+1\right)\left(3x-10\right)\)
b) \(x^2+6x+9-4y^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
c) \(x^2-2xy+y^2-5x+5y=\left(x-y\right)^2-5\left(x-y\right)=\left(x-y\right)\left(x-y-5\right)\)
d) \(4x^2-y^2-6x+3y=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
e) \(1-2a+2bc+a^2-b^2-c^2=\left(a-1\right)^2-\left(b-c\right)^2=\left(a-1-b+c\right)\left(a-1+b-c\right)\)
f) \(x^3-3x^2-4x+12=\left(x+2\right)\left(x-3\right)\left(x-2\right)\)
g) \(x^4+64=\left(x^2+8\right)^2-16x^2=\left(x^2+8-4x\right)\left(x^2+6+4x\right)\)h) \(x^4-5x^2+4=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)\)
i) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+16=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+16=\left(x^2+8x+7\right)^2+8\left(x^2+8x+7\right)+16=\left(x^2+8x+11\right)^2\)
a: \(3x^2-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(x+1\right)\left(3x-10\right)\)
b: \(x^2+6x+9-4y^2\)
\(=\left(x+3\right)^2-4y^2\)
\(=\left(x+3-2y\right)\left(x+3+2y\right)\)
c: \(x^2-2xy+y^2-5x+5y\)
\(=\left(x-y\right)^2-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-5\right)\)
a) 3x2−7x−10=(x+1)(3x−10)3x2−7x−10=(x+1)(3x−10)
b) x2+6x+9−4y2=(x+3)2−(2y)2=(x+3−2y)(x+3+2y)x2+6x+9−4y2=(x+3)2−(2y)2=(x+3−2y)(x+3+2y)
c) x2−2xy+y2−5x+5y=(x−y)2−5(x−y)=(x−y)(x−y−5)x2−2xy+y2−5x+5y=(x−y)2−5(x−y)=(x−y)(x−y−5)
d) 4x2−y2−6x+3y=(2x−y)(2x+y)−3(2x−y)=(2x−y)(2x+y−3)4x2−y2−6x+3y=(2x−y)(2x+y)−3(2x−y)=(2x−y)(2x+y−3)
e) 1−2a+2bc+a2−b2−c2=(a−1)2−(b−c)2=(a−1−b+c)(a−1+b−c)1−2a+2bc+a2−b2−c2=(a−1)2−(b−c)2=(a−1−b+c)(a−1+b−c)
f) x3−3x2−4x+12=(x+2)(x−3)(x−2)x3−3x2−4x+12=(x+2)(x−3)(x−2)
g) x4+64=(x2+8)2−16x2=(x2+8−4x)(x2+6+4x)x4+64=(x2+8)2−16x2=(x2+8−4x)(x2+6+4x)h) x4−5x2+4=(x+2)(x+1)(x−1)(x−2)x4−5x2+4=(x+2)(x+1)(x−1)(x−2)
i) (x+1)(x+3)(x+5)(x+7)+16=(x2+8x+7)(x2+8x+15)+16=(x2+8x+7)2+8(x2+8x+7)+16=(x2+8x+11)2(x+1)(x+3)(x+5)(x+7)+16=(x2+8x+7)(x2+8x+15)+16=(x2+8x+7)2+8(x2+8x+7)+16=(x2+8x+11)2
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) a2 - 10a + 25 - 4b2
b) a( x2 + 1 ) - x( a2 + 1 )
\(a,=\left(a-5\right)^2-4b^2=\left(a-2b-5\right)\left(a+2b-5\right)\\ b,=ax^2+a-a^2x-x=ax\left(a-x\right)+\left(a-x\right)=\left(ax+1\right)\left(a-x\right)\)
a: \(=\left(a-5-2b\right)\left(a-5+2b\right)\)
b: \(ax^2+a-a^2x-x\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(ax-1\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
a) \(=mp\left(m^2+mn-mp-np\right)=mp\left[m\left(m+n\right)-p\left(m+n\right)\right]=mp\left(m+n\right)\left(m-p\right)\)
b) \(=abm^2+abn^2+a^2mn+b^2mn=am\left(bm+an\right)+bn\left(bm+an\right)\)
\(=\left(bm+an\right)\left(am+bn\right)\)
Bài 2: Phân tích đa thức thành nhân tử
a) x2−xy+5y−25
b) xy−y2−3x+3y
c) x2(x−3)−4x+12
d) 2a(x+y)−x−y
e) 2x−4+5x2−10x
g) 10ax−5ay−2x+y
h) a2−2a+1−b2
a) x2-xy+5y-25
= x(2-y)+ 5(y-2)
= x(2-y)-5(2-y)
= (x-5)(2-y)
h: \(=\left(a-1-b\right)\left(a-1+b\right)\)
phân tích đa thức thành nhân tử: (a+b)(a2-b2)+(bc)(b2-c2)+(c+a)(c2-a2)
ta có :

Phân tích đa thức sau thành nhân tử:
a(b2+c2+bc) + b(c2+a2+ac)
Mời các cao nhân chỉ giáo!!!!
Biểu thức này không phân tích thành nhân tử được
Muốn phân tích được thành nhân tử thì cần có thêm số hạng \(c\left(a^2+b^2+ab\right)\)