Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
na na
Xem chi tiết
Đoàn Đức Hà
15 tháng 7 2021 lúc 16:15

Đặt \(d=\left(21n+4,14n+3\right)\)

Suy ra 

\(\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow3\left(14n+3\right)-2\left(21n+4\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.

Khách vãng lai đã xóa
Nguyễn Trần Bảo Đạt_OG97
15 tháng 7 2021 lúc 16:17

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

Khách vãng lai đã xóa
secret1234567
Xem chi tiết
Phía sau một cô gái
12 tháng 1 2022 lúc 9:31

Gọi ƯCLN 21n + 4 và 14n + 3 là d ( d ∈ N và d ≥ 1 )

Khi đó:  2 ( 21n + 4 ) ⋮ d  và 3 ( 14n + 3 ) ⋮ d

hay 42n + 8 ⋮ d    và 42n + 9 ⋮ d

Suy ra   42n + 9 - 42n + 8 ⋮ d   ⇒ 1 ⋮ d

Vậy d = 1 

Như vậy phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với n là số tự nhiên

Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 9:28

Gọi d=UCLN(14n+3;21n+4)

\(\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: 14n+3/21n+4 là phân số tối giản

Tiếng anh123456
Xem chi tiết
Alice
9 tháng 8 2023 lúc 8:32

Gọi \(\text{ƯCLN(21n+4,14n+3)}\) là \(\text{d}\)

\(\Rightarrow\) \(\text{21n+4 ⋮ d}\)

\(\text{14n+3 ⋮ d}\)

\(\Rightarrow\) \(\text{[3(14n+3)-2(21n+4) ⋮ d}\)

\(\Rightarrow\) \(\text{[42n+9-42n-8] ⋮ d}\)

\(\Rightarrow\) \(\text{1 ⋮ d}\)

\(\Rightarrow\) \(\text{d =1( đpcm )}\)

 

Le Giang
Xem chi tiết
thomas lê
24 tháng 8 2015 lúc 19:01

gọi d là ƯCLN của 21n+4 và 14n+3

=> 21n+4 chia hết cho d  =>2.(21n+4) chia hết cho d

     14n+3 chia hết cho d  =>3.(14n+3) chia hết cho d

=> (42n+9)-(42n+8) chia hết cho d

=> 42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=> d thuộc Ư(1)={1}

=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)

Nguyễn Quý Trang
27 tháng 1 2017 lúc 22:31

Khó nhỉ

Nguyễn Quý Trang
29 tháng 1 2017 lúc 0:12

ĐPCM là gì

Kurumi
Xem chi tiết
Thắng Nguyễn
20 tháng 5 2016 lúc 17:17

gọi d là UCLN (21n+4;14n+3)

ta có:

[3(14n+3]-[2(21n+4)] chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1

=>phân số trên tối giản vs mọi n

Nguyễn Trần Bảo Đạt_OG97
15 tháng 7 2021 lúc 16:15

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

Khách vãng lai đã xóa
Dũng
Xem chi tiết
Thắng Nguyễn
24 tháng 3 2016 lúc 23:00

gọi d là UCLN(14n+3;21n+4)

ta có:

3(14n+3)-2(21n+4) chia hết cho d

=>(42n+9)-(42n+8) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ps trên tối giản

dinhkhachoang
25 tháng 3 2016 lúc 6:12

goỊ Đ LÀ ƯC(21N+4/14N+3

=>14N+3 CHIA HẾT CHO Đ=>3(14N+12)CHIA HẾT CHO Đ

=>21N+4 CHIA HẾT CHO Đ=>2(21+8) CHI HẾT CHO Đ

=>42N+12 -42N+8 CHIA HẾT CHO Đ

=>1 CHIA HẾT CHO Đ =>Đ=1

VÌ 12N+4/14N+3 CÓ ƯC =1

=>21N+4/14N+3 LÀ PHÂN SỐ TỐI GIẢN

Nguyễn Thanh Nhân
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Devil
14 tháng 5 2016 lúc 17:07

gọi d là UCLN(21n+4;14n+3)

ta có:

[3(14n+3)]-[2(21n+4)]chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1

=>phân số trên tối giản

Lương Ngọc Anh
14 tháng 5 2016 lúc 17:04

gọi ƯCLN (21n+4;14n+3)=d

=> 21n+4 chia hết cho d

     14n+3 chia hết cho d

=> 42n+8 chia hết cho d

     42n+9 chia hết cho d

=> 1chia hết cho d

=> d=1

=>\(\frac{21n+4}{14n+3}\)là phân số tối giản.(đpcm)

(hình như đây là toán lớp 6 thì phải:D)

Nguyễn Quỳnh Vy
Xem chi tiết
Trương Tuấn Kiệt
19 tháng 2 2016 lúc 15:46

\(\frac{16n+5}{6n+2}\)là phân số tối giản ta đi chúng minh (16n+5; 6n+2)=1

Đặt: (16n+5; 6n+2)=d

=> 16n+5 chia hết cho d và 6n+2 chia hết cho d

=> 8.(6n+2) - 3.(16n+5) chia hết cho d=> 48n+16 - 48n-15=1

1 chia hết cho d hay d\(\in\)Ư(1) ={-1;1} 

Vậy: d=1 => \(\frac{16n+5}{6n+2}\)là phân số tối giản

\(\frac{14n+3}{21n+4}\)  làm tương tự như trên