Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2022 lúc 23:23

a.

- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm

Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)

- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)

\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)

- Với \(-1< m< 1\Rightarrow1-m^2< 0\)

\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

Vậy pt đã cho có nghiệm với mọi m

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 23:26

b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được

c. 

Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)

Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R

\(f\left(2\right)=4-5=-1< 0\)

\(f\left(3\right)=6-5=1>0\)

\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m

Hay pt đã cho luôn luôn có nghiệm

Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 22:32

\(1,\)

\(a,\) Sửa: \(A=10^n+72n-1⋮81\)

Với \(n=1\Leftrightarrow A=10+72-1=81⋮81\)

Giả sử \(n=k\Leftrightarrow A=10^k+72k-1⋮81\)

Với \(n=k+1\Leftrightarrow A=10^{k+1}+72\left(k+1\right)-1\)

\(A=10^k\cdot10+72k+72-1\\ A=10\left(10^k+72k-1\right)-648k+81\\ A=10\left(10^k+72k-1\right)-81\left(8k-1\right)\)

Ta có \(10^k+72k-1⋮81;81\left(8k-1\right)⋮81\)

Theo pp quy nạp 

\(\Rightarrow A⋮81\)

\(b,B=2002^n-138n-1⋮207\)

Với \(n=1\Leftrightarrow B=2002-138-1=1863⋮207\)

Giả sử \(n=k\Leftrightarrow B=2002^k-138k-1⋮207\)

Với \(n=k+1\Leftrightarrow B=2002^{k+1}-138\left(k+1\right)-1\)

\(B=2002\cdot2002^k-138k-138-1\\ B=2002\left(2002^k-138k-1\right)+276138k+1863\\ B=2002\left(2002^k-138k-1\right)+207\left(1334k+1\right)\)

Vì \(2002^k-138k-1⋮207;207\left(1334k+1\right)⋮207\)

Nên theo pp quy nạp \(B⋮207,\forall n\)

Nguyễn Hoàng Minh
10 tháng 10 2021 lúc 22:41

\(2,\)

\(a,\) Sửa đề: CMR: \(1\cdot2+2\cdot3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

Đặt \(S_n=1\cdot2+2\cdot3+...+n\left(n+1\right)\)

Với \(n=1\Leftrightarrow S_1=1\cdot2=\dfrac{1\cdot2\cdot3}{3}=2\)

Giả sử \(n=k\Leftrightarrow S_k=1\cdot2+2\cdot3+...+k\left(k+1\right)=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}\)

Với \(n=k+1\)

Cần cm \(S_{k+1}=1\cdot2+2\cdot3+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)

Thật vậy, ta có:

\(\Leftrightarrow S_{k+1}=S_k+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)

Theo pp quy nạp ta có đpcm

\(b,\) Với \(n=0\Leftrightarrow0^3=\left[\dfrac{0\left(0+1\right)}{2}\right]^2=0\)

Giả sử \(n=k\Leftrightarrow1^3+2^3+...+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)

Với \(n=k+1\)

Cần cm \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Thật vậy, ta có

\(1^3+2^3+...+k^3+\left(k+1\right)^3\\ =\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\\ =\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\\ =\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Theo pp quy nạp ta được đpcm

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2022 lúc 21:34

1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó

2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3. 

Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)

Ta có 2 TH sau:

- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)

\(\Rightarrow\) Tích đã cho chia hết 12

- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)

3. Với \(n=1\) thỏa mãn

Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)

\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)

Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)

Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)

TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)

\(\Rightarrow n=10m+4\)

TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)

Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5

Big City Boy
Xem chi tiết
dia fic
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 10:34

\(GT\Leftrightarrow a^2+b^2-2ab=a+b+2\)

\(\Leftrightarrow a^2+a+b^2+b=2\left(ab+a+b+1\right)\)

\(\Leftrightarrow a\left(a+1\right)+b\left(b+1\right)=2\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow\dfrac{a}{b+1}+\dfrac{b}{a+1}=2\)

Đặt \(\left(\dfrac{a}{b+1};\dfrac{b}{a+1}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x;y\ge0\\x+y=2\end{matrix}\right.\)

\(\Rightarrow0\le xy\le1\)

\(P=\left(1+x^3\right)\left(1+y^3\right)=1+x^3+y^3+x^3y^3\)

\(P=1+\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3\)

\(P=\left(xy\right)^3-6xy+9=xy\left[\left(xy\right)^2-6\right]+9\le9\)

Dấu "=" xảy ra khi \(xy=0\Leftrightarrow\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)

ILoveMath
Xem chi tiết
Nguyễn Tùng
Xem chi tiết
pham trung thanh
13 tháng 1 2019 lúc 11:39

sử dụng bđt phụ: \(\left(1+x^3\right)\left(1+y^3\right)\left(1+z^3\right)\ge\left(1+xyz\right)^3\)

Biến đổi tương đương

khi đó: \(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)

Tương tự có đpcm

Linh Lê
Xem chi tiết
Hà Nam Phan Đình
13 tháng 8 2017 lúc 10:42

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

Hà Nam Phan Đình
13 tháng 8 2017 lúc 9:14

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

Hà Nam Phan Đình
13 tháng 8 2017 lúc 9:16

2) (a+b+c)2=3(ab+bc+ac) =>(a-b)2+(b-c)2+(c-a)2=0

=>a-b=b-c=c-a=0 =>a=b=c

ILoveMath
Xem chi tiết
Đoàn văn mạnh
17 tháng 10 2021 lúc 15:08

ta có (2+\(\sqrt{3}\))^9=140452 ===> (2+\(\sqrt{3}\))^2021 là số nguyên  

(2-\(\sqrt{3}\))^2021 là số thập phân gần tiến tới 0                                                                                            vậy (2+\(\sqrt{3}\))^2021 +(2-\(\sqrt{3}\))^2021 k thể là số nguyên

Nguyễn Ân
1 tháng 12 2023 lúc 16:57

loading...

Thảo Vi
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined