Tìm Gía trị lớn nhất của
\(-\left|3x+\frac{1}{7}\right|+\frac{5}{3}\)
Tìm gía trị nhỏ nhất của biểu thức: \(M=\left(3x-\frac{3}{4}\right)^4+\left|y+\frac{1}{2}\right|+2013\)3
cái cuối là cộng với 2013
Vì \(\left(3x-\frac{3}{4}\right)^4\ge0\forall x\); \(\left|y+\frac{1}{2}\right|\ge0\forall y\)
\(\Rightarrow\left(3x-\frac{3}{4}\right)^4+\left|y+\frac{1}{2}\right|\ge0\forall x,y\)\(\Rightarrow M\ge2013\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-\frac{3}{4}=0\\y+\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=\frac{3}{4}\\y=\frac{-1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{-1}{2}\end{cases}}\)
Vậy \(minM=2013\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{-1}{2}\end{cases}}\)
Tìm các giá trị lớn nhất của biểu thức:
a. \(E=\frac{4}{5}+\frac{20}{\left|3x-5\right|+\left|4y+5\right|+8}\)
b. \(F=-6+\frac{24}{2.\left|x-2y\right|+3.\left|2x+1\right|+6}\)
Tìm Giá Trị Lớn Nhất Của Các Biểu Thức:
a. \(E=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)
b. \(F=-6+\frac{24}{2.\left|x-2y\right|+3.\left|2x+1\right|+6}\)
a) Tìm giá trị lớn nhất của biểu thức: \(B=\left|3x-2\right|-\left|3x+7\right|+1\)
b) Cho \(A=\frac{10^{2006}+53}{9}\)Chứng minh rằng A là một số tự nhiên.
c) Cho \(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)Chứng minh rằng S không phải là số tự nhiên.
Gía trị của x để biểu thức E =\(2+\frac{3}{\left|7x+5\right|+4}\)đạt giá trị lớn nhất là x = ?
Để E đạt GTLN thì \(\left|7x+5\right|\ge0\) với \(\forall x\in R\)nên
\(\left|7x+5\right|+4\ge0+4=4\)
\(\Rightarrow E=2+\frac{3}{\left|7x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)
Dấu ''='' xảy ra khi \(\left|7x+5\right|=0\Leftrightarrow x=-\frac{5}{7}\)
Tính Gía trị của biểu thức \(A=\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{2}{9}\right).........\left(1-\frac{2}{79}\right)\)
\(A=\left(1-\frac{2}{5}\right)\cdot\left(1-\frac{2}{7}\right)\cdot\left(1-\frac{2}{9}\right)\cdot...\cdot\left(1-\frac{2}{79}\right)=\frac{3}{5}\cdot\frac{5}{7}\cdot\frac{7}{9}\cdot...\cdot\frac{77}{79}=\frac{3}{79}\)
3/79 đúng chắc, mình bấm máy cả buổi.
tìm giá trị lớn nhất , nhỏ nhất trên \(\left[\frac{1}{4};4\right]\)của \(y=\frac{1}{3}log_{\frac{1}{2}}^3x+log^2_{\frac{1}{2}}x-\left(3log_{\frac{1}{2}}x\right)+1\)
ta có
\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)
Đặt =\(t=\log_{\frac{1}{2}}x\) ta có
\(y=\frac{1}{3}t^3+t^2-3t+1\)
với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)
thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]
ta tính \(y'=t^2+2t-3\)
ta tính y'=0 suy ra t=1(loại);t=-3(loại)
ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)
vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\)
hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Gía trị lớn nhất của biểu thức A= \(\frac{6}{\left|x+1\right|+3}\)là
Gía trị lớn nhất của biểu thức \(B=\frac{3}{5}-3\cdot\left|2x\right|-13\) là ?