Chứng minh rằng với mọi x, y thuộc Q thì :
\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Chứng minh rằng với mọi x, y thuộc Q thì :
\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
Ta có:
\(VT^2\ge VP^2\)
\(\left(\left|x-y\right|\right)^2\ge\left(\left|x\right|-\left|y\right|\right)^2\)
\(x^2+y^2-2xy\ge x^2+y^2-2\left|xy\right|\)
\(-2xy\ge-2\left|xy\right|\)
\(2xy\le2\left|xy\right|\)
Điều này đúng nên BĐT đúng
chứng minh rằng với mọi số thực x,y luôn có :
\(\left(x^3+y^3\right)^2\le\left(x^2+y^2\right)\left(x^4+y^4\right)\)
ta có \(VT=\left(x^3+y^3\right)^2=\left(x.x^2+y.y^2\right)^2\le\left(x^2+y^2\right)\left(x^4+y^4\right)\) (đpcm)
Chứng minh rằng với mọi số nguyên x,y thì: \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) là số chính phương
Ta có:
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:
\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)
\(=t^2-y^4+y^4=t^2\)
\(=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x,y,z\in Z\) nên:
\(x^2\in Z,5xy\in Z,5y^2\in Z\)
\(\Leftrightarrow x^2+5xy+5y^2\in Z\)
Vậy \(A\) là số chính phương (Đpcm)
Cho x , y thuộc Q . Chứng tỏ rằng : \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Với mọi \(x,y\in Q\) ta có:
\(\left\{{}\begin{matrix}x\le\left|x\right|;-x\le\left|x\right|\\y\le\left|y\right|;-y\le\left|y\right|\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)
\(\Rightarrow x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
\(\Rightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
\(\Rightarrow\left|x+y\right|\le\left|x\right|+\left|y\right|\left(đpcm\right).\)
Dấu '' = '' xảy ra khi \(xy\ge0.\)
Chúc bạn học tốt!
Chứng minh rằng với mọi số nguyên \(x,y\) thì \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\) là số chính phương.
Ta có \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)
\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương. \(\Rightarrowđpcm\)
Chứng minh rằng với x,y thuộc Z thì:
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)là số chính phương
ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4
=(x+y)(x+4y)(x+2y)(x+3y)+y^4
=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4
đặt x^2+5xy=a
<=>A=a(a+2y^2)+y^4
=a^2+2.a.y^2+y^4
=(a+y^2)^2
là scp
Chứng minh rằng với mọi số nguyên x, y thì \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)là số chính phươnng
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)\(\)
\(=1+y^2+x^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=x^2+2xy+y^2+x^2y^2+2xy+1+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(xy+1\right)^2+2\left(x+y\right)\left(xy+1\right)\)
\(=\left(x+y+xy+1\right)^2\)
Chứng minh rằng với mọi số nguyên x và y thì :
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)là số chính phương
Chứng minh với mọi x, y khác 0 thì giá trị của biểu thức \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
không phụ thuộc vào giấ trị của biến