chứng minh biểu thức : x^4 -x+1/2 có giá trị dương với mọi giá trị bất kì của x
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) 1/4 x -x² +2 b) 3x + 2x² +1 c) 9x² -12x + 5 d) ( x+2)² +(x-2)²
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
Chứng minh các biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến:
a) A= x^2 + x + 1
b) B= 2x^2 + 2x +1
a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)
Cho A = ( 2x + 1 )2 - ( x + 2 ) ( x - 2 ) - 2x ( x + 1 )
a, Rút gọn A
b, Tìm giá trị x để giá trị của biểu thức A = 4
c, Chứng minh A có giá trị dương với mọi x
a) \(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)
\(A=4x^2+4x+1-x^2+4-2x^2-2x\)
\(A=x^2+2x+5\)
b) Để A = 4
=> \(x^2+2x+5=4\)
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
c) Ta có A = x2 + 2x + 5
A = ( x + 1 )2 + 4
=> \(A\ge4>0\left(đpcm\right)\)
a,\(A=\left(2x+1\right)^2-\left(x+2\right)\left(x-2\right)-2x\left(x+1\right)\)
\(=4x^2+4x+1-x^2+4-2x^2-2x\)
\(=x^2+2x+5\)
b,\(A=x^2+2x+5=4\)
\(\Rightarrow x^2+2x+5-4=0\)
\(x^2+2x+1=0\)
\(\left(x+1\right)^2=0\)
\(x+1=0\)
\(x=-1\)
c, Ta có: \(A=x^2+2x+5=\left(x^2+2x+1\right)+4=\left(x+1\right)^2+4\ge4>0\)
Hay: A > 0 => đpcm
=.= hok tốt!!
chứng minh biểu thức sau luôn luôn có giá trị dương với mọi giá trị của biến x:E=x^2+2x+15
\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)
E=(x2+2x+1)+14=(x+1)2+14
ta có (x+1)2 >=0 với mọi x
suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x
chứng minh biểu thức sau có giá trị dương với mọi giá trị của biến E=x^2+3x+3
\(E=x^2+3x+3\)
\(E=\left(x^2+3x+\frac{9}{4}\right)+\frac{3}{4}\)
\(E=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow E\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)
Do đó B luôn dương với mọi x
Chứng minh các biểu thức sau nhận giá trị dương với mọi giá trị của biến:
a) A = x^2 – x + 1
b) B = (x – 2)(x – 4) + 3
c) C = 2x^2 – 4xy + 4y^2 + 2x + 5
a) \(A=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=\left(x-2\right)\left(x-4\right)+3=x^2-6x+8+3=\left(x-3\right)^2+2\ge2>0\)
c) \(C=2x^2-4xy+4y^2+2x+5=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4>0\)