Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Nguyên
Xem chi tiết
Thanh Tùng DZ
27 tháng 4 2020 lúc 21:20

2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)

Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2

Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )

Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng 

Nếu m > -4 thì  ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)

Ta được : \(-4< m\le\frac{-3}{2}\)

Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)

Khách vãng lai đã xóa
Hà Thương
Xem chi tiết
Yen Nhi
9 tháng 2 2023 lúc 14:33

a)

\(x=-2\) là nghiệm của phương trình

\(\Rightarrow\left(-2\right)^2-\left(-2\right).\left(m-1\right).\left(-2\right)-3=0\)

\(\Leftrightarrow4+4\left(m-1\right)-3=0\)

\(\Leftrightarrow4\left(m-1\right)=-1\)

\(\Leftrightarrow m-1=-\dfrac{1}{4}\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

\(x^2-2\left(m-1\right)x-3=0\)

\(\Leftrightarrow x^2+\dfrac{1}{2}x-3=0\)

\(\Leftrightarrow2x^2+x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

b)

\(\Delta'=\left(m-1\right)^2+12x>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)

Có:

 \(Q=x_1^3x_2+x_1x_2^3-5x_1x_2\)

\(=x_1x_2.\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)

\(=-3\left[4\left(m-1\right)^2+6\right]+15\)

\(=-12\left(m-1\right)^2-3\)

Mà \(-12\left(m-1\right)^2\le0\)

\(\Rightarrow-12\left(m-1\right)^2-3\le-3\)

\(Max_Q=-3\Leftrightarrow m-1=0\Leftrightarrow m=1\).

 

Dora
9 tháng 2 2023 lúc 14:35

`a)` Thay `x=-2` vào ptr có:

   `(-2)^2-2(m-1).(-2)-3=0<=>m=3/4`

Thay `m=3/4` vào ptr có: `x^2-2(3/4-1)x-3=0<=>x^2+1/2x-3=0`

             `<=>2x^2+x-6=0<=>(x+2)(2x-3)=0<=>[(x=-2),(x=3/2):}`

`b)` Ptr có nghiệm `<=>\Delta' >= 0`

            `<=>[-(m-1)]^2+3 >= 0<=>(m-1)^2+3 >= 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1 .x_2=c/a=-3):}`

Có:`Q=x_1 ^3 x_2+x_1 x_2 ^3 -5x_1 x_2`

`<=>Q=x_1 x_2(x_1 ^2+x_2 ^2)-5x_1 x_2`

`<=>Q=x_1 x_2[(x_1+x_2)^2-2x_1 x_2]-5x_1 x_2`

`<=>Q=-3[(2m-2)^2-2.(-3)]-5.(-3)`

`<=>Q=-3(2m-2)^2-18+15`

`<=>Q=-3(2m-2)^2-3`

Vì `-3(2m-2)^2 <= 0<=>-3(2m-2)^2-3 <= -3 AA m`

  `=>Q <= -3 AA m`

Dấu "`=`" xảy ra `<=>2m-2=0<=>m=1`

Vậy GTLN của `Q` là `-3` khi `m=1`

Linh Nguyễn
Xem chi tiết
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 21:28

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

Đinh Đức Tùng
Xem chi tiết
2611
23 tháng 5 2022 lúc 21:32

Ptr có nghiệm `<=>\Delta' >= 0`

                       `<=>[-(m+1)]^2-(m^2+4) >= 0`

                       `<=>m^2+2m+1-m^2-4 >= 0`

                       `<=>m >= 3/2`

Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`

Ta có:`C=x_1+x_2-x_1.x_2+3`

`<=>C=2m+2-m^2-4+3`

`<=>C=-m^2+2m+1`

`<=>C=-(m^2-2m+1)+2`

`<=>C=-(m-1)^2+2`

 Vì `-(m-1)^2 <= 0 AA m >= 3/2`

`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`

Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)

Vậy không tồn tại `m` để `C` có `GTLN`

hai tran
Xem chi tiết
Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 3 2023 lúc 17:06

3:

\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)

=4m^2-4m+1+8m+44

=4m^2+4m+45

=(2m+1)^2+44>=44>0

=>Phương trình luôn có hai nghiệm pb

|x1-x2|<=4

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)

=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)

=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)

=>0<=4m^2+4m+45<=16

=>4m^2+4m+29<=0

=>(2m+1)^2+28<=0(vô lý)

mira 2276
Xem chi tiết
ntkhai0708
13 tháng 4 2021 lúc 21:02

Xét phương trình có dạng $ax^2+bx+c=0$ có: \(\left\{{}\begin{matrix}a=1\ne0\\b=-\left(m+1\right)\\c=m\end{matrix}\right.\)

suy ra phương trình là phương trình bậc 2 một ẩn x
Có \(\Delta=b^2-4ac=m^2+2m+1-4.1.m=m^2-2m+1=\left(m-1\right)^2\ge0\)

nên phương trình luôn có 2 nghiệm 
Theo hệ thức Vi-et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m+1\right)\right]}{1}=m+1\\x_1.x_2=\dfrac{c}{a}=\dfrac{m}{1}=m\end{matrix}\right.\)

Phương trình có 2 nghiệm trái dấu và nghiệm dương > trị tuyệt đối nghiệm âm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\ac< 0\\x_1+x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m+1>0\end{matrix}\right.\Leftrightarrow0>m>-1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 8 2017 lúc 11:58

Gọi x0 là nghiệm chung của hai phương trình

thì x0 phải thỏa mãn hai phương trình trên:

Thay x = x0 vào hai phương trình trên ta được

x 0 2 + m x 0 + 1 = 0 x 0 2 + x 0 + m = 0

⇒ (m – 1)x0 + 1 – m = 0

⇔ (m – 1)(x0 – 1) = 0 (*)

Xét phương trình (*)

Nếu m = 1 thì 0 = 0 (luôn đúng)

hay hai phương trình trùng nhau

Lúc này phương trình x2 + x + 1 = 0

vô nghiệm nên cả hai phương trình đều vô nghiệm.

Vậy m = 1 không thỏa mãn.

+) Nếu m ≠ 1 thì x0 = 1

Thay x0 = 1 vào phương trình x02 + mx0 + 1 = 0 ta được m = −2

Thay m = −2 thì hai phương trình có nghiệm chung

Đáp án cần chọn là: D