Chi tứ giác lồi ABCD,góc A +góc B=180 độ,AB<AC,AC là tia phân giác của góc BAD, Cmr BC=DC
Cho tứ giác ABCD có AB=AB=BC, biết góc A + góc C =180 độ.
a, Chứng minh DB là tia phân giác góc D
b, Tứ giác ABCD là hình gì?
Cho tứ giác ABCD có AB=AB=BC, biết góc A + góc C =180 độ.
a, Chứng minh DB là tia phân giác góc D
b, Tứ giác ABCD là hình gì?
a: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{CDB}\) là góc nội tiếp chắn cung CB
mà \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CB}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
b: Xét ΔABD có AB=AD
nên ΔABD cân tại A
=>\(\widehat{ABD}=\widehat{ADB}\)
=>\(\widehat{ABD}=\widehat{BDC}\)
hay AB//CD
=>ABCD là hình thang
mà ABCD là tứ giác nội tiếp
nên ABCD là hình thang cân
Bài 1: a) Chứng minh rằng độ dài một cạnh của tứ giác nhỏ hơn tổng độ dài 3 cạnh còn lại của tứ giác
b) Chứng minh rằng tổng độ dài hai đường chéo của tứ giác:
A) Lớn hơn tổng độ dài 2 cạnh đối
B) Lớn hơn nửa chu vi tứ giác
C) Nhỏ hơn chu vi tứ giác
Bài 2: Cho tứ giác ABCD có AB = BC , góc A + góc C = 180 độ. Chứng minh DB là phân giác của góc ADC
1)a)1 tứ giác lồi có nhiều nhất là mấy góc nhọn ?mấy góc tù ?mấy góc vuông ?chứng minh
b)cm trong 1 tứ giác lồi có các góc ko bằng nhau thì có ít nhất 1 góc tù và 1 góc nhọn
a, Giả sử tứ giác ABCD có 90 độ < gA , gB , gC ,gD < 180 độ ==> gA + gB + gC + gC > 360 độ. Điều này trái với định lý tổng các góc trong tứ giác ( = 360 độ )
Vậy tứ giác lồi có nhiều nhất là 3 góc tù.
Cm tương tự với giả sử cả 4 góc đều nhọn ==> tổng 4 góc nhọn < 360 dộ.(vô lí )
==> tứ giác có nhiều nhất là 3 góc nhọn ( Góc thứ tư là góc tù )
Nếu cả 4 góc đều vuông ==> tổng 4 góc = 360 độ.(Đó chính là hình chữ nhật, hình vuông )
bn có thể cm giup3 mình dc ko>?
Tứ giác ABCD có góc A trừ góc B = 50 độ. Cac tia phân giác góc C va D cắt nhau tại I và góc CID=115 độ. Tính các góc A và B
Cho tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của các góc E và F cắt nhau tại I. Chứng minh rằng
a, Nếu góc BAD=130 độ, góc BCD=50 độ thì IE vuông góc với IF
b, Góc EIF bằng nửa tổng của một trong 2 cặp góc đối của tứ giác ABCD
cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90
hình bình hành ABCD có góc A = 120 độ, AB =a, BC=b, các đường phân giác của 4 góc cắt nhau tạo thành tứ giác MNPQ. tính diện tích MNPQ
hình bình hành ABCD có góc A = 120 độ, AB =a, BC=b, các đường phân giác của 4 góc cắt nhau tạo thành tứ giác MNPQ. tính diện tích MNPQ
hình bình hành ABCD có góc A = 120 độ, AB =a, BC=b, các đường phân giác của 4 góc cắt nhau tạo thành tứ giác MNPQ. tính diện tích MNPQ