Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
almira tam
Xem chi tiết
Lan
Xem chi tiết
Lan
15 tháng 7 2019 lúc 21:50

giúp mk nha, Thanks you hihi

hong tran
Xem chi tiết
Phước Lộc
2 tháng 3 2020 lúc 19:54

1) 2x + 2y - x(x+y)

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2/ 5x2 - 5xy -10x + 10y

= 5x(x - y) - 10(x - y)

= (5x - 10(x - y)

3/ 4x2 + 8xy - 3x - 6y

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

Khách vãng lai đã xóa
Thu Huệ
2 tháng 3 2020 lúc 19:59

1) 2x + 2y - x(x + y) 

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2) 5x2 - 5xy - 10x + 10y 

= 5x(x - y) - 10(x - y)

= (5x - 10)(x - y)

= 5(x - 2)(x - y)

3) 4x2 + 8xy - 3x - 6y  

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

4) 2x2 + 2y2 - x2z + z - y2z - 2 

= 2(x2 + y2 - z(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2)

5) x2 + xy - 5x - 5y

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

6) x(2x - 7) - 4x + 14 

= x(2x - 7) - 2(2x - 7) 

= (x - 2)(2x - 7)

7)x2 - 3x + xy - 3y  

= x(x + y) - 3(x + y)

= (x - 3)(x + y)

Khách vãng lai đã xóa
Phước Lộc
2 tháng 3 2020 lúc 20:02

5/ x2 + xy - 5x - 5y 

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

6/ x(2x - 7) - 4x + 14

= 2x2 - 7x - 4x + 14

= (2x2 - 4x) - (7x - 14)

= 2x(x - 2) -7(x - 2)

= (2x - 7)(x - 2)

7/ x2 - 3x + xy - 3y

= x(x - 3) + y(x - 3)

= (x + y)(x - 3) 

Khách vãng lai đã xóa
Bùi Hằng
Xem chi tiết
Vũ Việt Bình
15 tháng 10 2018 lúc 20:29

Bài 1:

a) x( x - y) + x - y = (x - y)(x + 1)

b) 2x + 2y - x( x + y) = ( 2x + 2y) - x( x + y)

= 2( x + y ) - x( x + y ) = ( x + y )(2 - x )

c) 5x2 - 5xy - 10x + 10y = ( 5x2 - 5xy ) - ( 10x - 10y)

= 5x( x - y ) - 10( x - y ) = ( x - y )(5x - 10 )

= 5( x - y )( x - 2 )

d) 4x2 + 6xy - 3x - 6y = Mình ko làm được!!! bạn chép có sai đề không

Vũ Việt Bình
15 tháng 10 2018 lúc 20:38

Bài 2:

x ( 2x - 7) - 4x + 14 = 0

⇒ 2x2 - 7x - 4x + 14 = 0 ⇒ ( 2x2 - 4x ) - ( 7x - 14 ) = 0

⇒ 2x( x - 2 ) - 7(x - 2) = 0

⇒ (x - 2)(2x - 7) = 0

\(\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy x = 2; x = \(\dfrac{7}{2}\)

quách thị trang nhung
Xem chi tiết
quách thị trang nhung
19 tháng 6 2018 lúc 21:57

mình ghi bị nhầm bài rồi

Đỗ Linh Đan
5 tháng 8 2021 lúc 14:38

vậy bạn ghi lại bài đúng đi

Khách vãng lai đã xóa
Cao Nguyễn Tuệ Phú
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:24

a: \(=15x^4-12x^3+9x^2\)

c: \(=5x^3-15x^2-4x^2+12x\)

\(=5x^3-19x^2+12x\)

vân chi
Xem chi tiết
Nguyễn Huy Tú
11 tháng 2 2022 lúc 19:39

Câu 1 :

\(3\left(x-3\right)\left(x+7\right)+\left(1-4\right)\left(x+4\right)+18\)

\(=3\left(x^2+4x-21\right)-3\left(x+4\right)\)

\(=3x^2+12x-63-3x-12=3x^2+9x-75\)

Thay x = 1/2 vào ta được 

\(\dfrac{3.1}{4}+\dfrac{9}{2}-75=-\dfrac{279}{4}\)

Câu 2 : 

\(5x^2+5xy+5x=5x\left(x+y+1\right)\)

Thay x = 60 ; y = 50 ta được 

\(300\left(60+50+1\right)=33300\)

Câu 3 : 

\(4x^2y^2+2xy^2+6x^2y=2xy\left(2xy+y+3x\right)\)

Thay x = 10 ; y  = 1/2 ta được 

\(\dfrac{2.10.1}{2}\left(\dfrac{2.10.1}{2}+\dfrac{1}{2}+30\right)=405\)

Nguyễn Lê Phước Thịnh
11 tháng 2 2022 lúc 19:37

1: \(=3\left(x^2+4x-21\right)+x^2-16+18\)

\(=3x^2+12x-63+x^2+2\)

\(=4x^2+12x-61\)

\(=4\cdot\dfrac{1}{4}+12\cdot\dfrac{1}{2}-61=1-61+6=-54\)

2: \(=5\cdot60^2+5\cdot60\cdot50+5\cdot60=33300\)

3: \(=4\cdot10^2\cdot\dfrac{1}{4}+2\cdot10\cdot\dfrac{1}{4}+6\cdot100\cdot\dfrac{1}{2}=405\)

Nguyễn Ngọc Thái Anh
Xem chi tiết
Hieu senpai
1 tháng 11 2017 lúc 18:14

khó quá em mới học lớp 5

Nguyễn Ngô Minh Trí
1 tháng 11 2017 lúc 18:19

em mới học lớp 7 à chị

k em nha

thanks

Vũ Đức Long
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
25 tháng 8 2017 lúc 20:46

Đặt biến phụ y = x + ( a + b)/2 và biến đổi P(x) về dạng  

  mx4 + nx2 + p

     Ví dụ: Phân tích   P(x) = (x – 3)4 + ( x – 1) 4 – 16 thành nhân tử.

HD:

          Đặt y = x – 2 lúc đó P(x) trở thành

Q(y) = (y – 1)4 + ( y + 1) 4 – 16

                  = 2y4 + 12y2 – 14

                  = 2(y2 + 7)( y2 – 1)

                  = 2(y2 + 7)(y – 1)(y + 1)

          Do đó:  P(x) = 2(x2 – 4x + 11)(x – 3)(x – 1).

    1.6.3. Khai thác bài toán: 

     Bằng cách đặt ẩn phụ , ta có thể giải các bài toán tương tự như sau:

Bài toán 1.1: Phân tích đa thức

    A = 

Bài toán 1.2: Phân tích đa thức

    B = 

Bài toán 1.3: Phân tích đa thức

    C = (

1.7. Phương pháp thêm bớt cùng một hạng tử.

     1.7.1. Phương pháp :

          Thêm bớt cùng một hạng tử để đa thức có nhiều hạng tử hơn có dạng hằng đẳng thức rồi dùng phương pháp  nhóm các hạng tử và đặt nhân tử chung để tiếp tục phân tích. Thông thường hay đưa về dạng  các hằng đẳng thức đáng nhớ sau khi thêm bớt.

     1.7.2. Ví dụ:

          Phân tích các đa thức  sau thành nhân tử

1) a3 + b3 + c3 – 3abc

2) x5  – 1    

3) 4x4  + 81 

4) x8 + x4 + 1

HD:

          Các hạng tử của  các đa thức đã cho không chứa thừa số chung, không có một dạng hằng đẳng thức nào, cũng không thể nhóm các số hạng. Vì vậy ta phải biến đổi đa thức bằng cách thêm bớt cùng một hạng tử để có thể vận dụng các phương pháp phân tích đã biết.

1)      a3 + b3 + c3 – 3abc

Ta sẽ thêm và bớt  3a2b +3ab2  sau đó nhóm để phân tích tiếp

           a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)

                            = (a + b)3 +c3 – 3ab(a + b + c)

                            = (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]

                            = (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]

                            = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)

2)      x– 1     

Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm: 

           x5  – 1   = x5 – x + x – 1

                        = (x5 – x) + (x – 1)

                        = x(x4 – 1) + ( x – 1)

                       = x(x2 – 1)(x2 + 1) + (x - 1)

                       = x(x +1)(x – 1)(x2 + 1) + (  x – 1)

                       = (x – 1)[x(x + 1)(x2 + 1) + 1].

3)      4x+ 81 

Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:

          4x+ 81  =  4x + 36x2 + 81 – 36x2

                        = ( 2x+ 9)2 – (6x)2

                        =  (2x2 + 9 – 6x)(2x2 + 9 + 6x)

4)      x+ x4 + 1

Ta sẽ thêm và bớt x4 sau đó nhóm các hạng tử sử dụng các hằng đẳng thức để phân tích tiếp:

          x+ x4 + 1   = x8 + 2x+ 1 – x4 = (x4 + 1)2 – x4

                              = (x4 + 1 – x2)(x4 + 1 + x2)

                              =(x4 – x2 + 1)(x4 + 2x2 – x2 + 1)

                              =(x4 – x2 + 1)[(x2 + 1)2 – x2 ]

                              =( x4 – x2 + 1)(x2 + 1 + x2)(x2 + 1 – x2)

                              = (x4 – x2 + 1)(2x2 + 1).

    1.7.3.Khai thác bài toán: 

     Bằng phương pháp thêm bớt hạng tử, ta có thể giải các bài toán tương tự như sau:

Bài toán 1.1: Phân tích đa thức

    M = x4 + 4y4

Bài toán 1.2: Phân tích đa thức

   N = x4 + x2 + 1

Bài toán 1.3: Phân tích đa thức

   P = (1 + x2)2 – 4x(1 + x2)