cm : B= 1/2^2 + 1/4^2 + ... + 1/2n^2 < 1/2 ( n là stn ; n lớn hơn hoặc bằng 2 )
giúp mình với
Sửa đề: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
Ta có: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
\(=11\cdot25^n+8^n\cdot4+8^n\cdot2\)
\(=11\cdot25^n+6\cdot8^n\)
Vì \(25\equiv8\)(mod 17)
nên \(11\cdot25^n+6\cdot8^n\equiv11\cdot8^n+6\cdot8^n\equiv17\cdot8^n\equiv0\)(mod 17)
hay \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}⋮17\)(đpcm)
cho n là STN
CM: 52n+1 + 22n+4 + 2n+1\(⋮\) 23
Có hằng đẳng thức: $a^n - b^n = (a-b)[a^{n-1}.b + a(n-2).b$² $+..+ b^(n-1)] = (a-b).p$
* $5^{2n} - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^{2n} - 5.2^n = 5.23.p$
$=> 5^{2n+1} - 5.2^n = 5.23p$ chia hết cho 23
* $2^{n+4} + 2^{n+1} = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n $
Vậy: $5^{2n+1} + 2^{n+4} + 2^{n+1} = 5^{2n+1} - 5.2^n + 23.2^n$ chia hết cho 23
1/ CM:
a. (x-1).(x2+x+1)=x3-1
b. (x3+x2y+xy2+y3).(x-y)=x4-y4
2/ Cho a và b là 2 STN. Biết a chia hết cho 3 dư 1; b chia hết cho 3 dư 2. CM rằng ab chia cho 3 dư 2.
3/ CM rằng biểu thức n(2n-3) - 2n(n+1) luôn chia hết cô 5 với mọi số nguyên n.
4/ CM rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n.
1.CM ps 2n+1/3n+1 là ps tối giản vs mị n là stn
2.CM A=3/10+3/11+3/12+3/14 không phải là stn
câu 1 là mọi n nhé
Gọi ƯCLN của 2n + 1 và 3n + 1 là d, ta có:
\(2n+1⋮d\) và \(3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮d;2\left(3n+1\right)⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\frac{2n+1}{3n+1}\)là p/s tối giản với mọi n
Ta có : \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow A< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=1,5\left(1\right)\)
Ta lại có : \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow A>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=1\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow1< A< 1,5\)
=> ĐPCM
Tìm stn n sao cho :
a, (a^4-2n^3+2n^2-2n+1) chi hết cho (n^4-1)
b, (n^3-n^2+2n+7) chia hết cho (n^2+1)
cm : A= 1/2^2 +1/3^2 + 1/4^2 + ...+ 1/n^2 < 1 ( n là stn ; nlowns hơn hoặc bằng 2)
ta có A< 1/1x2+1/2x3+...1/n-1xn+1
ta có A<1-1/(n-1)(n+1)<1
=> A <1
Tìm STN là ƯC của
a) n+2 và 3n-2
b) n-1 và 2n+3
c) 2n+1 và 3n-2
im n€N de bieu thuc sau la STN
A=4/(n-1)+6/(n-1)-3/(n-1)
B=(2n+9)/(2+n)-(3n)/(2+n)+(5n+17)/(n+2)
1.tim STN n sao cho 2n+3 chia het cho 2n-1
2.tim STN a va b biet a.b=48 va UCLN(a, b)=2