chứng minh phương trình bậc hai một ẩn sau luôn có 2 nghiệm phân biệt vs mọi m
x2-(m+1)x+m=0
Chứng minh rằng phương trình bậc hai, ẩn x tham số m: x^2- 2(m+2)x +m +1 = 0 luôn có hai nghiệm phân biệt với mọi m.
∆ = [-2(m + 2)]² - 4(m + 1)
= 4m² + 16m + 16 - 4m - 4
= 4m² + 12m + 12
= 4m² + 12m + 9 + 3
= (2m + 3)² + 3 > 0 với mọi m
Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m
Cho phương trình bậc 2 ẩn số x:
\(x^2-2\left(m+1\right)x+m-4=0\) (1)
a.Giải phương trình (1) khi m = -5
b.Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1;x2 với mọi giá trị m
a. Với \(m=-5\) pt trở thành:
\(x^2+8x-9=0\)
\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)
b. Ta có:
\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)
\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m
Cho phương trình bậc hai ẩn số x: x2 - (m - 1)x - m2 + m - 2 = 0 (1)
a) Chứng minh phương trinh (1) luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Tim những giá trị của m để phương trình (1) có hai nghiệm trái dấu.
a) \(\Delta=\left(m-1\right)^2-4.\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\)
nên phương trình ( 1 ) luôn có hai nghiệm phân biệt
b) PT ( 1 ) có hai nghiệm trái dấu
\(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}4m^2+\left(m-3\right)^2\ge0\\-m^2+m-2< 0\end{cases}\Leftrightarrow\forall m}\)
Cho phương trình bậc hai ẩn số x: x2 - 2(m + 1)x + m - 4 = 0. (1)
a) Chứng minh phương trình (1) luôn luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Gọi x1, x2 là hai nghiệm phân biệt của phương trình (1). Tìm m để 3( x1 + x2) = 5x1x2.
không dễ chút nào
cho phương trình bậc hai đối với ẩn x: (m+1)*x^2 - 2*(m-1)*x + m-3 =0 (m khác -1)
a)chứng minh rằng phương trình (1) luôn luôn có hai nghiệm phân biệt với mọi giá trị của m khác -1
b) gọi X1, X2 là nghiệm của (1), tìm các giá trị của m sao cho nghiệm này gấp đôi nghiệm kia.
Cho phương trình ( ẩn x ): x mũ 2 + 2(m+2)x +4m - 1= 0 (1)
a, giải phương trình (1) khi m=2
b, chứng minh rằng với mọi giá trị của m, phương trình (1) luôn có hai nghiệm phân biệt. Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình (1) không phụ thuộc vào m
a, Với m=2 thì phương trình (1) trở thành
x mũ 2 + 2(2+2)x +4.2 -1 =0
<=> x mũ 2 + 8x +7 =0
<=> x mũ 2 + x + 7x +7 =0
<=> (x+1)(x+7) =0
<=> x= -1 hoặc x= -7
b, Ta có:
penta' = (m+2)mũ2 - 4m -1
= m m 2 +4m +4 -4m -1
= m mũ2 +3
vì m mũ2 luôn > hoặc = 0 với mọi m
suy ra m mũ2 +3 luôn >0 với mọi m
suy ra penta' >0 hay có hai nghiệm phân biệt (đpcm)
CÒN PHẦN SAU THÌ MK KO BIẾT LÀM .... THÔNG CẢM
Cho phương trình :\(x^2-mx+m-2=0\)(1) (x là ẩn số )
a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị m
\(x^2-mx+m-2=0\) (1) (a=1;b=-m;c=m-2)
\(\Delta=b^2-4ac=m^2-4.\left(-m\right).\left(m-2\right)\)
\(=m^2+4m^2-8m\)
=5m2-8m
Đến đây đưa về hằng đẳng thức mà ra dấu (-) bn xem đề có sai ko
cho phương trình ẩn x: \(x^2=2mx+2m+8\)(1)
a. giải pt đã cho khi m=4
b. Chứng minh PT luôn có 1 nghiệm phân biệt vs mọi m
c. tìm giá trị của m để phương trình (1) có hai nghiệm x1,x2 sao cho x1+ 2x2=2
Bài 4:Cho phương trình ẩn x: x2 - (m + 3)x + m = 0
a) Chứng minh rằng với mọi giá trị của m phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm Phân biệt x1, x2 thỏa mãn hệ thức:
x12 + x22 = 6
a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.
b) Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)
Mà \(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.
a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)
\(=m^2+6m+9-4m\)
\(=m^2+2m+9\)
\(=m^2+2m+1+8\)
\(=\left(m+1\right)^2+8\)
Lại có: \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)
Vậy phương trình luôn có 2 nghiêm phân biệt
b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)
Theo bài ra:
\(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow\left(m+3\right)^2-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m=6\)
\(\Leftrightarrow m^2+6m+9-2m-6=0\)
\(\Leftrightarrow m^2+4m+3=0\)
\(\Leftrightarrow m^2+m+3m+3=0\)
\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)
\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)
Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức