Cho tam giác MNP vuông cân tại M. Biết NP = 6cm. Tính độ dài MN và MP
Cho tam giác MNP vuông tại M,có MN = 6cm MP=8cm
a Tính độ dài cạnh Np và chu vi tam giác MNP
b,Tính đường phân giác của góc N cắt Mp tại K. Vẽ KE Vuông góc NP(E thuộc NP)
Chứng minh Tam giác MNK = Tam giác ENK
c, Chứng minh MK <KP
a: NP=10cm
C=MN+MP+NP=24(cm)
b: Xét ΔMNK vuông tại M và ΔENK vuông tại E có
NK chung
\(\widehat{MNK}=\widehat{ENK}\)
Do đó: ΔMNK=ΔENK
c: Ta có: MK=EK
mà EK<KP
nên MK<KP
Cho tam giác MNP cân tại M có M<90°,từ M kẻ MH vuông góc với NP(H thuộc NP)
a) chứng minh tam giác MNH = tam giác MPH
b) tính độ dài cạnh MN, biết MH = 4cm và NH = 3cm
c) kẻ ND vuông góc với MP tại D,PE vuông góc với MN tại E. Gọi I là giao điểm của ND và PE.chứng minh MI là phân giác của góc NMP
d) chứng minh 3 điểm M,I,H thẳng hàng
Ghi đầy đủ mà nó hiện lên có 1 khúc,khóc ẻ
Cho tam giác MNP cân tại A có MN = MP = 5 cm ; NP= 8cm
Kẻ MH vuông góc với NP (H thuộc NP).
a. Chứng minh HN = HP và
b. Tính độ dài MH
c. Kẻ HD vuông góc MN (D thuộc MN) Kẻ HE vuông góc MP (E thuộc MP).Chứng minh DHDE là tam giác cân.
a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H
cho tam giác MNP vuông tại N có MN = 6cm, Np = 8 cm. Tia phân giác của góc N cắt Mp tại H. Từ H kẻ He vuông góc với Np ( E thuộc NP)
a) Tính đọ dài MP
b) chứng minh: tam giác MNP đồng dạng với tam giác HEP
c) Tính độ dài HM; HP
a) Cho tam giác ABC vuông tại A biết AB = 5cm và AC = 12cm .Tính BC . b) Tam giác MNP có độ dài ba cạnh MN = 6cm, MP = 8cm , NP = 10cm có phải là tam giác vuông không? Vì sao
Cho tam giác MNP vuông tại M (MN<MP). Vẽ đường cao MH(H thuộc NP)
a. Chứng minh tam giác MNP đồng dạng với tam giác HNM
b. Chứng minh MN^2=NH.NP
c. Vẽ tia phân giác MK của góc NMP (K thuộc NP). Biết MN=7,2 cm và MP=9,6 cm. Tính độ dài các đoạn thẳng NP, NH và MK.
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
Mình nghĩ MK nên áp dụng ta lét nhé
7,2/x = 12/9,6-x
<=>7,2 . (9.6-x) = 12.x
<=>69,12 - 7,2x = 12x
<=>69,12 = 12x + 7,2x
<=> 69,12 = 19, 2
<=> x = 69,12 : 19,2 = 3,6
Vậy MK bằng 3,6cm
(mình ko chắc đúng ko nhưng theo mình là vậy)
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ
a) Cho tam giác ABC vuông tại A biết AB = 5cm và AC = 12cm .Tính BC . b) Tam giác MNP có độ dài ba cạnh MN = 6cm, MP = 8cm , NP = 10cm có phải là tam giác vuông không? Vì sao? Cần gấp
a.Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)\(\Rightarrow5^2+12^2=BC^2\Rightarrow169=BC^2\Rightarrow BC=13\left(cm\right)\)
b. Tam giác MNP là tam giác vuông vì \(6^2+8^2=10^2\)
Chúc bạn học tốt!
Cho tam giác MNP ( góc M = 90 độ ) có MN = 6cm, MP = 8cm. Tia phân giác của góc M cắt cạnh NP tại I. Từ I kẻ IK vuông góc với MP ( K thuộc MP )
a) Tính độ dài các đoạn thẳng NI, PI và IK
b) Tính diện tích của các tam giác MNI và MPI.