Cho phương trình: \(x^2+2x-m^2-1=0\)
Tìm hệ thức liên hệ giữa x1 và x2 không phụ thuộc vào m
Cho phương trình x^2-2(m+1)x+m-2=0,m thuộc R
Gỉa sử phương trình đã cho có hai nghiệm phân biệt x1 và x2. Tìm hệ thức liên hệ giữa x1 và x2 mà không phụ thuộc vào m. Tui đang gấp.
Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`
`<=>(m+1)^2-m+2 > 0<=>m^2+2m+1-m+2 > 0`
`<=>m^2+m+3 > 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m-2):}`
`<=>{(x_1+x_2=2m+2),(2x_1.x_2=2m-4):}`
`=>x_1+x_2-2x_1.x_2=6`
3,cho phương trình bậc hai x2-2(m-1)x+m-2=0 . chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1,x2 . tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m
- Xét phương trình đề cho có :
\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)
\(=m^2-3m+3\ge\dfrac{3}{4}>0\)
- Phương trình luôn có hai nghiệm phân biệt với mọi m .
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)
Cho phương trình: mx² - 2x + m - 1 = 0 Tìm m để phương trình có nghiệm duy nhất Tìm m để phương trình có 2 nghiệm phân biệt Tìm m để phương trình có hai nghiệm x1,x2 thoả 3x1x2 - 2x1 - 2x2 = -2 Tìm hệ thức liên hệ giữa x1,x2 không phụ thuộc vào m
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)
Cho phương trình x2 -2(m-2)x+2m-5=0
a) m=?: phương trình có nghiệm x1,x2
b) với m đó , tìm biểu thức liên hệ giữa x1,x2 không phụ thuộc vào m
a) Để phương trình có nghiệm \(x_1,x_2\)
Thì \(\Delta'>0\)
\(\Leftrightarrow\left(m-2\right)^2-1.\left(2m-5\right)>0\)
\(\Leftrightarrow m^2-4m+4-2m+5>0\)
\(\Leftrightarrow m^2-6m+9>0\)
\(\Leftrightarrow\left(m-3\right)^2>0\)
\(\Leftrightarrow m\ne3\)
b)Với m khác 3. Theo hệ thức viet ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-4\left(1\right)\\x_1.x_2=2m-5\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2) ta được
\(x_1+x_2-x_1.x_2=1\) không phụ thuộc vào m
Cho phương trình 2 x 2 + 2mx + m 2 – 2 = 0, với m là tham số. Gọi x 1 ; x 2 là hai nghiệm của phương trình. Tìm hệ thức liên hệ giữa x 1 ; x 2 không phụ thuộc vào m.
A. x 1 . x 2 = x 2 – x 1 + 1
B. x 1 − x 2 = x 2 – x 1 – 1
C. x 1 . x 2 = x 2 – x 1 + 1
D. x 1 . x 2 = x 1 + x 2 − 1
cho phương trình x^2-2(m+1)x+m-2=0 chứng minh phương trình có hai nghiệm phân biệt b) Tìm hệ thức liên hệ giữa x1,x2 không phụ thuộc m
a) Ta có: △' = [-(m+1)]2 - m + 2
= m2 + 2m + 1 - m + 2
= m2 + m + 1
= (m + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\) > 0 ∀m
=> Phương trình luôn có 2 nghiệm phân biệt
b) Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1.x_2=m-2\end{matrix}\right.\)⇔ \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\2x_1.x_2=2m-4\end{matrix}\right.\)
=> x1 + x2 - 2x1x2 = 2m + 2 - 2m + 4 => x1 + x2 - 2x1x2 = 6
Cho phương trình: x 2 – (m + 2)x + (2m – 1) = 0 có hai nghiệm phân biệt x 1 ; x 2 . Hệ thức liên hệ giữa 2 nghiệm không phụ thuộc vào giá trị của m là:
A. 2 ( x 1 + x 2 ) − x 1 . x 2 = − 5
B. x 1 + x 2 − x 1 . x 2 = − 1
C. x 1 + x 2 + 2 x 1 . x 2 = 5
D. 2 ( x 1 + x 2 ) − x 1 . x 2 = 5
Cho phương trình X^2 - 2(m + 1)x + m - 6 = 0 (1) , ( với m là tham số )
a> Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1; x2 với mọi giá trị của m
b> Tìm một hệ thức liên hệ giữa x1 ; x2 không phụ thuộc vào m
c> với giá trị nào của m thì phương trình (1) có ít nhất một nghiệm dương
a: Δ=(2m+2)^2-4(m-6)
=4m^2+8m+4-4m+24
=4m^2+4m+28
=(2m+1)^2+27>0
=>Phương trình luôn có hai nghiệm phân biệt
c: Để (1) có ít nhất 1 nghiệm dương thì
m-6<0 hoặc (2m+2>0 và m-6>0)
=>m>6 hoặc m<6
Bài 3: Gọi x1, x2 là nghiệm của phương trình: \(\left(m-3\right)^2-2\left(m-1\right)x+m-5=0\)Hãy lập hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m.