Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồng Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:26

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

thtyygffgy
22 tháng 2 2023 lúc 20:06

tự làm nha

 

Hồng Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:22

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

Hồng Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2021 lúc 23:57

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

ko cần nói
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
13 tháng 10 2023 lúc 6:13

`#3107.101107`

a,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3+2^5\right)+\left(2^5+2^7+2^9\right)+...+\left(2^{19}+2^{21}+2^{23}\right)\)

\(=2\left(1+2^2+2^4\right)+2^5\cdot\left(1+2^2+2^4\right)+...+2^{19}\cdot\left(1+2^2+2^4\right)\)

\(=\left(1+2^2+2^4\right)\cdot\left(2+2^5+...+2^{19}\right)\)

\(=21\cdot\left(2+2^5+...+2^{19}\right)\)

Vì \(21\text{ }⋮\text{ }21\)

\(\Rightarrow21\left(2+2^5+...+2^{19}\right)\text{ }⋮\text{ }21\)

Vậy, \(C\text{ }⋮\text{ }21\)

b,

\(C=2+2^3+2^5+...+2^{23}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{21}+2^{23}\right)\)

\(=\left(2+2^3\right)+2^4\cdot\left(2+2^3\right)+...+2^{20}\cdot\left(2+2^3\right)\)

\(=\left(2+2^3\right)\cdot\left(1+2^4+...+2^{20}\right)\)

\(=10\cdot\left(1+2^4+...+2^{20}\right)\)

Vì \(10\text{ }⋮\text{ }10\)

\(\Rightarrow10\cdot\left(1+2^4+...+2^{20}\right)\text{ }⋮\text{ }10\)

Vậy, \(C\text{ }⋮\text{ }10.\)

Kiều Vũ Linh
13 tháng 10 2023 lúc 6:53

a) c = 2 + 2³ + 2⁵ + ... + 2¹⁹ + 2²¹ + 2²³

= (2 + 2³ + 2⁵) + (2⁷ + 2⁹ + 2¹¹) + ... + (2¹⁹ + 2²¹ + 2²³)

= 2.(1 + 2² + 2⁴) + 2⁷.(1 + 2² + 2⁴) + ... + 2¹⁹.(1 + 2² + 2⁴)

= 2.21 + 2⁷.21 + ... + 2¹⁹.21

= 21.(2 + 2⁷ + ... + 2¹⁹) ⋮ 21

Vậy c ⋮ 21

b) c = 2 + 2³ + 2⁵ + 2⁷ + ... + 2²¹ + 2²³

= (2 + 2³) + (2⁵ + 2⁷) + ... + (2²¹ + 2²³)

= 10 + 2⁴.(2 + 2³) + ... + 2²⁰.(2 + 2³)

= 10 + 2⁴.10 + ... + 2²⁰.10

= 10.(1 + 2⁴ + ... + 2²⁰) ⋮ 10

Vậy c ⋮ 10

fidlend
Xem chi tiết

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

Ngô Chí Tài
Xem chi tiết
Ngô Chí Tài
21 tháng 10 2021 lúc 22:47

giúp tớ với

Khách vãng lai đã xóa
trường giang
17 tháng 12 2021 lúc 8:46

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

Khách vãng lai đã xóa
Phạm Huy Hoàng
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết
nguyễn thị kim oanh
5 tháng 12 2015 lúc 17:46

bạn hãy tính số hạng để coi đủ nhóm hay ko rồi làm ! chúc bạn làm bài tốt !

•↭长ɦáทɦ•☪ôทջՇúa
Xem chi tiết
BLACK CAT
27 tháng 10 2018 lúc 16:02

Ta có:

A=2+22+23+...+2120

A=(2+22+23+24+25)+...+(2116+2117+2118+2119+2120)

A=2.(1+2+22+23+24)+...+2116.(1+2+22+23+24)

A=2.63+...+2116.63

A=63.(2+...+2116)

A=21.3.(2+...+2116)\(⋮\)21

Vậy A chia hết cho 21

Tẫn
27 tháng 10 2018 lúc 16:17

\(A=2^1+2^2+2^3+2^4+....+2^{119}+2^{120}\)

\(=\left(2^1+2^2+2^3+2^4+2^5+2^6\right)+.....+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2\left(1+2+2^2+2^3+2^4+2^5\right)+.....+2^{115}\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(=2.63+....+2^{115}.63\)

\(=63\left(2+....+2^{115}\right)\)

\(=3.21.\left(2+...+2^{115}\right)\)

\(\Rightarrow A⋮21\)