chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
chứng minh rằng với mọi số tự nhiên n thì (n+2021)^2+2022 không là số chính phương
-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)
\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)
\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)
\(\Leftrightarrow-2n-4043+2022< 0\)
\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)
-Từ điều trên ta suy ra:
\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Vì n nguyên dương nên ta có \(n^2< n^2+n+1< n^2+2n+1\)
hay \(n^2< n^2+n+1< \left(n+1\right)^2\)
Mà n và (n+1) là hai số chính phương liên tiếp và \(n^2+n+1\)là số kẹp giữa hai số ấy nên không thể là số chính phương.
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Với n nguyên dương thì
n2 < n2 + n < n2 + 2n
<=> n2 < n2 + n + 1 < n2 + 2n + 1
<=> n2 < n2 + n + 1 < ( n + 1 )2
Vì n2 + n + 1 kẹp giữa 2 SCP liên tiếp nên n2 + n + 1 không phải là SCP ( đpcm )
a)Chứng minh rằng: Với mọi số nguyên dương n thì:\(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
b)Cho S=abc+bca+cab
Chứng minh rằng S không phải là số chính phương
Mn giúp mik nhoa~
a, 3n + 2 - 2n + 2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 10.3n - 5.2n
= 10.3n - 10.2n - 1
= 10(3n - 2n - 1) chia hết cho 10
b, S = abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 11c
= 111(a + b + c)
= 3.37(a+b+c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên
=> 3(a + b + c) chia hết cho 37
=> a + b + c chia hết cho 37
vì a;b;c là chữ số => a + b + c lớn nhất = 27
=> vô lí
vậy S không là số chính phương
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(3^{n+2}+3^n-2^n-2^{n+2}\)
=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)
= \(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)
= \(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)
=\(3^n.10-2^{n-1}.5.2\)
= \(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
a, 3n+2 - 2n+2 + 3n - 2n
= 3n (32 + 1) - 2n (22 + 1)
= 10.3n - 5.2n
= 10.3n - 10.2n - 1
= 10(3n - 2n) - 1 chia hết cho 10
1.Chứng minh tích của 2,3,4 số nguyên dương liên tiếp ko là số chính phương.
2.Chứng minh với mọi x thuộc N* thì x^4+2x^3+2x^2+2x+1 ko là số chính phương
Dây là 4 số nguyên dương liên tiếp, còn phần kia tương tự nha
Đặt A = n.(n+1)(n+2)(n+3) với n ≥ 1; n € N
A = [n.(n+3)].[(n+1)(n+2)] = (n² + 3n).(n²+3n+2)
= t(t+2) (với t = n² + 3n ≥ 4 ; t € N)
Ta thấy
t² < A = t² + 2t < t² + 2t + 1 = (t+1)²
=> A nằm giữa 2 số chính phương liên tiếp
=> A không phải là số chính phương (đpcm)
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Vì n nguyên dương nên ta có:
n2 < n2 +n+1 < n2 + 2n+1 hay n2 < n2 +n+1 < (n+1)2
Mà n và (n+1) là hai số chính phương liên tiếp và n2+n+1 là số kẹp giữa hai số đó nên không thể là số chính phương
1/ Chứng minh rằng: Nếu số nguyên dương n không phải là số chính phương thì √n là số vô tỉ.
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.