Tìm các số nguyên tố p thỏa mãn 2^p+p^2 là số nguyên tố
tìm các số nguyên x;y thỏa mãn: x(y+2)-y=3
Ta có :
x(y + 2) - y = 3
xy + 2x - y = 3
xy - y + 2x - 2 = 3 - 2
(x - 1)y + 2(x - 1) = 1
(2 + y)(x - 1) = 1 = 1.1 = (-1).(-1)
Xét 2 trường hợp ,ta có :
\(\left(1\right)\hept{\begin{cases}2+y=1\\x-1=1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}}\)
\(\left(2\right)\hept{\begin{cases}2+y=-1\\x-1=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=0\end{cases}}}\)
Tìm các cặp số nguyên x,y thỏa mãn:2(xy-3)=x
2.(xy - 3) = x
=> 2xy - 6 = x
=> 2xy - x = 6
=> x.(2y - 1) = 6
Vậy x và 2y -1 thuộc ước của 6
tới đây dễ rồi bạn nhé :D => bạn tự làm nhé, bye
Bài 1:Cho a,b là các số nguyên tố thỏa mãn: (a-1) chia hết cho b và (b3 - 1) chia hết cho a.Chứng minh: a= b2+b+1
Bài 2:Cho x,y là hai số thực thỏa mãn:
x3 + y3 +3x2 + 4x + 3y2 +4y +4=0.Tìm giá trị lớn nhất của biểu thức P=1/x+1/y
1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)
b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)
tìm các cặp số nguyên x;y thỏa mãn |x+3|+|x-1|=16/|y-2|+|y+2|
cho xy là các số nguyên tố thỏa mãn x2 + 45 =y ? tổng x +y = ?
tìm các cặp số nguyên x;y thỏa mãn 2y2 =3-|x+4|
Tìm tất cả các số nguyên tố thỏa mãn sa cho p2+14 cũng là số nguyên tố.
tìm các số nguyên x , y thỏa mãn đẳng thức :
\([(x-y)^2+2(xy+y^2-4y)]\)=xy+y2-4y