giải và biện luận\(a^2x+2>\left(3a-2\right)x+a\)
Giải và biện luận hệ bất phương trình sau :
\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\)
\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\) (1)
Xét các bất phương trình thành phần
\(\left(x^2-1\right)\left(x-2\right)\ge0\) (a)
\(x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\) (b)
Ta có T(1)=T(a)\(\cap\) T(b)
Lập bảng xét dấy
\(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)
x | -\(\infty\) -1 1 2 +\(\infty\) |
f(x) | - 0 + 0 - 0 + |
Từ bảng xét dấu ta được T(a) = \(\left[-1;1\right]\cup\left[2;+\infty\right]\)
Từ : \(x^2-\left(3a+1\right)x+a\left(2a+1\right)\) ta có các nghiệm x= a; x=2a+1
- Nếu \(a\le2a+1\Leftrightarrow a\ge-1\) thì T(b) = \(\left[a;2a+1\right]\)
Xét các trường hợp sau :
+ Trường hợp 1 :
\(\begin{cases}-1\le a\le1\\-1\le2a+1\le1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\0\le a\le0\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
+ Trường hợp 2
\(\begin{cases}-1\le a\le1\\1<2a+1<2\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\a\in\left\{0;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\)
+ Trường hợp 3
\(\begin{cases}-1\le a\le1\\2\le2a+1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\\frac{1}{2}\le a\end{cases}\) \(\Leftrightarrow\) \(\frac{1}{2}\le a\le1\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Trường hợp 4
1<a<2 suy ra 2a+1>3>2. Khi đó ta có Ta có T(a)\(\cap\) T(b)= \(\left[2;2a+1\right]\)
+ Trường hợp 5 :
a\(\ge\)2 suy ra 2a+1 \(\ge\) a \(\ge\) 2. Khi đó T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
- Nếu 2a+1<a \(\Leftrightarrow\) a<-1 thì T(b) = \(\left[a;2a+1\right]\)
Khi đó ta có T(a)\(\cap\) T(b) = \(\varnothing\) nên (1) vô nghiệm
Từ đó ta kết luận :
+ Khi a<-1 hệ vô nghiệm T(1) =\(\varnothing\)
+ Khi \(-1\le a\le0\) hoặc \(a\ge2\) hệ có tập nghiệm T (1) = \(\left[a;2a+1\right]\)
+ Khi 0<a<\(\frac{1}{2}\) hệ có tập nghiệm T(1) = \(\left[a;1\right]\)
+ Khi \(\frac{1}{2}\)\(\le\)a \(\le\)1 hệ có tập nghiệm T(1) = \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Khi 1<a<2, hệ có tập nghiệm T(1) =\(\left[2;2a+1\right]\)
giải và biện luận phương trình sau với a, b là tham số
1/ \(b\left(ax-b+2\right)x=2\left(ax+1\right)\)
2/ \(a^2x=a\left(x+b\right)-b\)
Cho PT: \(x^3+2ax^2-\left(a+1\right)^2x-2a.\left(a+1\right)^2=0\) ( a là hằng).
a) Giải và biện luận phương trình.
b) Với -1<a<1 nghiệm nào là nghiệm nhỏ nhất của phương trình
\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)
\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\)
Pt đã cho luôn có 3 nghiệm (như trên) với mọi a
\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)
\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất
Giải và biện luận
a, \(m\left(2-x\right)+\left(m-1\right)^2>2x+5\)
b, \(\left(m-2\right)x+\frac{mx+2}{m}>\frac{3}{m}-2x\)
\(\left\{{}\begin{matrix}2x+3y=1\\\left(m+3\right)x-2y=-2\end{matrix}\right.\)
giải và biện luận
Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m+3}\ne\dfrac{3}{-2}\)
=>\(m+3\ne-\dfrac{4}{3}\)
=>\(m\ne-\dfrac{13}{3}\)
Để hệ có vô số nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}=\dfrac{1}{-2}\)
mà \(\dfrac{3}{-2}\ne\dfrac{1}{-2}\)
nên \(m\in\varnothing\)
Để hệ vô nghiệm thì \(\dfrac{2}{m+3}=\dfrac{3}{-2}\ne\dfrac{1}{-2}\)
=>\(\dfrac{2}{m+3}=\dfrac{3}{-2}\)
=>\(m+3=-\dfrac{4}{3}\)
=>\(m=-\dfrac{13}{3}\)
Giải biện luận phương trình: \(x^3+2ax^2-\left(a+1\right)^2x-2a\left(a+1\right)^2=0\)
Giải và biện luận phương trình:
a)\(\frac{an}{a-x}+\frac{\left(a+n\right)\left(\text{anx}+nx^2+x^3\right)}{x^3+nx^2-a^2x-a^2n}=\frac{\text{ax}}{n+x}+\frac{nx^2}{x^2-a^2}\left(a\ne0\right)\)
b)\(\frac{a+x}{a^2+\text{ax}+x^2}-\frac{a-x}{\text{ax}-x^2-a^2}=\frac{3a}{2\left(a^4+a^2x^2+x^4\right)}\)
TIỂU THƯ ĐÁNG YÊU à, bạn mới học đến lớp 7 thì đừng trả lời câu hỏi của mình.
\(\left\{{}\begin{matrix}2x-my=m^2\\x+y=2\end{matrix}\right.\)
giải và biện luận HPT
\(\left\{{}\begin{matrix}2x-my=m^2\\x+y=2\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì \(\dfrac{2}{1}\ne\dfrac{-m}{1}\)
=>\(m\ne-2\)
Để hệ có vô số nghiệm thì \(\dfrac{2}{1}=\dfrac{-m}{1}=\dfrac{m^2}{2}\)
=>\(\left\{{}\begin{matrix}m=-2\\m^2=-2m\end{matrix}\right.\Leftrightarrow m=-2\)
Để hệ vô nghiệm thì \(\dfrac{2}{1}=-\dfrac{m}{1}\ne\dfrac{m^2}{2}\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{1}=-\dfrac{m}{1}\\\dfrac{m^2}{2}\ne\dfrac{-m}{1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m^2\ne-2m\end{matrix}\right.\)
=>\(m\in\varnothing\)
giải pt và biện luận:\(x+\frac{2x\left|x+a\right|}{x}=\frac{a^2}{x}\)
mấy bạn lm cách làm nha kq mik có rồi