Cho a,b,c,d thuộc N* thỏa mãn a/b < c/d .Chứng minh rằng 2014a+c/2014b+d < c/d
Cho a,b,c,d thuộc N* thỏa mãn a/b <c/d
Chứng minh rằng 2014a+c / 2014b+d < c/d
Cho a,b,c,d thuộc N* thỏa mãn a/b<c/d. Chứng minh rằng: 2014a+c/2014b+d <c/d
Lời giải:
$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0\Rightarrow \frac{ad-bc}{bd}<0$
$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)
Xét hiệu:
$\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{d(2014b+d)}$
$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$
$\Rightarrow \frac{2014a+c}{2014b+d}<\frac{c}{d}$
chờ a,b,c,d thuộc N* thỏa mãn a/b<c/d. Chứng minh 2014a+c/2014b +d<c/d
Cho a, b, c, d thuộc N* thỏa mãn \(\frac{a}{b}\)<\(\frac{c}{d}\).
Chứng minh rằng: \(\frac{2014a+c}{2014b+d}\)<\(\frac{c}{d}\)
Cho a,b,c,d \(\in\) N* thỏa mãn \(\frac{a}{b}\)<\(\frac{c}{d}\).
Chững minh rằng \(\frac{2014a+c}{2014b+d}\)< \(\frac{c}{d}\)
Lời giải:
Do $\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{ad-bc}{bd}<0$
$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)
Xét hiệu $\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{(2014b+d)d}$
$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$
$\Rightarrow \frac{2014a+c}{2014b+d}< \frac{c}{d}$
cho a b c d thỏa mãn a/a+b + b/b+c + c/c+d + d/d+a thuộc Z chứng minh rằng a+b+c+d là hợp số
cho dãy tỉ số =nhau
2014a+b+c+d/a=a+2014b+c+d/b=a+b+2014c+d/c=a+b+c+2014d/d
Tính M = a+b/c+d+b+c/d+a+c+d/a+b+d+a/b+c
Cho a; b; c; d ∈ N* thỏa mãn \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). Chứng minh rằng: 2018a+c / 2018b+d < \(\dfrac{c}{d}\)
\(\text{cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2 l}\)cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2