Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TimeHunter
Xem chi tiết
Đinh Tuấn Việt
22 tháng 5 2015 lúc 11:31

\(\frac{a}{b}

Thái Kim Huỳnh
Xem chi tiết
Akai Haruma
31 tháng 10 lúc 22:08

Lời giải:

$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0\Rightarrow \frac{ad-bc}{bd}<0$

$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)

Xét hiệu: 

$\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{d(2014b+d)}$

$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$

$\Rightarrow \frac{2014a+c}{2014b+d}<\frac{c}{d}$

fafi
Xem chi tiết
Nguyễn Minh Sơn
Xem chi tiết
doremon
2 tháng 5 2015 lúc 15:59

Vì \(\frac{a}{b}

Kizomi
Xem chi tiết
Akai Haruma
29 tháng 10 lúc 21:44

Lời giải:

Do $\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{ad-bc}{bd}<0$

$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)

Xét hiệu $\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{(2014b+d)d}$

$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$

$\Rightarrow \frac{2014a+c}{2014b+d}< \frac{c}{d}$

FAN ONE PIECE
Xem chi tiết
Nguyễn Khánh Ly
Xem chi tiết
кαвαиє ѕнιяσ
Xem chi tiết
adsv
Xem chi tiết
Võ Thị Quỳnh Giang
11 tháng 8 2017 lúc 16:08

đề kiểu j đây bn?