Cho ΔABC vg tại C, K là trung điểm BC . Kẻ KI vg góc với AB tại I. Chứng minh AI2 - BI2 = AC2
Cho ΔABC vg tại C, K là trung điểm BC . Kẻ AI vg góc với AB tại I. Chứng minh AI2 - BI2 = AC2 .
cho tam giác ABC vg tại B có AB = 6 cm , AC = 10 cm . Tia p/giác của góc A cắt BC tại I , từ I kẻ IH vg góc vs AC tại H
a, Tính độ dài cạnh BC và tìm góc nhỏ nhất của tam giác ABC
b, Chứng minh IB = IH
c, Cm AI là đg trung trực của đoạn thẳng BH
d, Biết AB cắt HI tại K và E là trung điểm CK , Chứng minh ba điểm A , I , E thẳng hàng
cho tam giác ABC vg tại A có góc C=60 độ tia phân giác góc A cắt BC tại E kẻ EK vg góc với AB tại K kẻ BD vg góc với AD tai D :chứng minh rằng :
a) AC=AK b)DEvg góc CK và CK//BD c) EB>AC d)ba đường thẳng AC,EK,BD đồng quy tại 1 điểm
Câu 7: Cho tam giác ABC vg tại A. Gọi D là trung điểm của BC. Từ D kẻ DM vg góc vs AB(M thuộc AB), DN vg góc vs AC (N thuộc AC). Trên tia DN lấy điểm E sa cho N là trung điểm của DE. a) Tứ giác AMDN là hình gì? Vì sao? b) Chứng minh: N là trung điểm AC. c) Tứ giác ADCE là hình gì?Vì sao? d) Tam giác ABC cần có thêm điều kiện gì để tứ giác ABCE là hình thang cân
a: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
=>AMDN là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MN//AB
=>N là trung điểm của AC
c: Xét tứ giác ADCE có
N là trung điểm chung của AC và DE
Do đó: ADCE là hình bình hành
mà DA=DC
nên ADCE là hình thoi
Cho∆ABC vg tại A, AC= 6cm, ABC=8cm. Đường trung tuyến AM. Qua D nằm giữa C và M. ( DM<DC) kẻ đường thẳng vg góc vs BC cắt AC tại E. Cắt AB tại H
A. Tính AM
B. Gọi I là trung điểm EH. Cm: AI vg góc AM
C. Đường thẳng qua Ạ vg góc với IM cắt BC tại Q. Cm: MD × MQ = MA ²
cho tam giác ABC vg tại A có AB<AC.Gọi I là trung điểm của AC. Qua I kẻ dg thẳng vg góc với BC tại D, kẻ dg thẳng vg với AC, chúng cắt nhau tại e. Gọi M là giao điểm của AI với BA
a) CM tam giác IAM=tam giác ICE
b) CM AE // MB
c) so sánh MD với BD
Cho ΔABC có góc A =90độ , AB =AC , gọi K là trung điểm BC
a.Chứng minh ΔAKB=ΔAKC
b.Chứng minh AKvuông góc với BC
c.Từ C kẻ đường vuông góc với BC tại C cắt đường thẳng AB tại E. Chứng minh EC//AK
d.Chứng minh CB=CE
a) Xét \(\Delta\)AKBvà \(\Delta\)AKC có
AK là cạnh chung
AB = AC ( gt )
\(\widehat{BAK}\) = \(\widehat{KAC}\) ( vì K là trung điểm của BC )
\(\Rightarrow\) \(\Delta\)AKB = \(\Delta\)AKC
b) \(\rightarrow\) KB = KC ( 2 cạnh tương ứng )
mà \(\widehat{AKB}+\widehat{AKC}=180^O\) ( 2 góc kề bù )
\(\Rightarrow\) KB = KC = 180 : 2 = 90o
\(\Rightarrow\) AK \(\perp\) BC
c) bn ghi lỗi
d) k lm đc vì tùy thuộc câu c nha bn
Cho ΔABC có M là trung điểm của BC , AM vuông góc với BC . Từ M kẻ Mt // AC , từ B kể đường vuông góc với BC cắt Mt tại N .
a, Chứng minh AM là phân giác của góc BAC ,
b, Chứng minh ΔAMB = ΔNBM,
c, MN cắt AB tại I . Chứng minh I là trung điểm của AB ,
d, Chứng minh AN // BC .
Bài 8 :
Cho ΔABC cân tại A có M là trung điểm của BC
a) Vẽ hình
b) Chứng minh rằng : AM là đường trung trực của ΔABC
c) Kẻ BH vuông góc với AC (H thuộc AC), CK vuông góc với AB (K thuộc AB). Chứng minh rằng : BH = CK
d) Chứng minh rằng : HK//BC
e) Gọi O là giao điểm của BH và CK
Chứng minh rằng : ba điểm AOM thẳng hàng