cho tam giác ABC vuông tại A,AB=4,5 cm;AC=6cm,trung tuyến AM.Đường thẳng vuông góc với AC tại C cắt tia AM tại N
a,Tính BC
b,C/m AN=2AM
c,Phân giác của góc BAC cắt BC tại D.C/m D nằm giữa B và M
1.Cho tam giác ABC từ A kẻ AH vuống góc với BC tại H.Biết AH=6 cm, BH=4,5 cm, HC=8 cm.
a)Tính AB và AC
b)Chứng tỏ tam giác ABC là tam giác vuông.
Cho tam giác ABC vuông tại AH =6 cm BH = 4,5 cm. Tính HC,AB,AC,BC
Áp dụng hệ thức lượng ta có : AH2 = BH.HC = \(\frac{36}{4,5}\)= 8
AB 2=BC.BH ; AC2=HC.BC . Bạn áp dụng hệ thức lượng tính đươc ngay mà !
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AH = 6 cm; BH = 4,5 cm. Tính AB, AC, BC, HC.
b) Biết AB = 6 cm, BH = 3 cm. Tính AH, AC, CH
a,
pytago trong tam giác ABH
\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)
dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)
pytago cho tam giác ABC
\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)
\(=>HC=BC-HB=8cm\)
b, pytago cho tam giác AHB
\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)
rồi tính AC , CH làm tương tự bài trên
Cho tam giác ABC vuông tại A , đường cao AH a, Biết AH = 6 cm , BH = 4,5 cm . Tính AB , AC , BC, HC b, Biết AB=6 cm , BH = 3cm . Tính AH , AC ,HC
Cho tam giác ABC có AB = 6 cm ; AC = 4,5 cm ; BC = 7,5 cm a) chứng minh tam giác ABC vuông tại A b) Kẻ đường cao AH (H thuộc BC) tính BH, HC, AH và góc B,C của tam giác c) Tính diện tích tam giác ABC d) tìm vị trí điểm M để diện tích tam giác ABC bằng diện tích tam giác MBC
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
Cho ABC có AB =6 cm, AC =4,5 cm BC = 7,5 cm
a. Chứng minh tam giác ABC vuông tại A
b.Tính các góc B,C và đường cao AH của tam giác
c.tính diện tích của tam giác ABC
\(a,BC^2=AB^2+AC^2\Rightarrow\Delta ABC\) vuông tại A
\(b,\sin B=\dfrac{AC}{BC}=\dfrac{3}{5}\approx\sin37^0\Rightarrow\widehat{B}\approx37^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx53^0\\ AH=\dfrac{AB\cdot AC}{BC}=3,6\left(cm\right)\\ c,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot4,5=13,5\)
a. \(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=53^0\\sinB=\dfrac{AC}{BC}\approx37^0\end{matrix}\right.\)
\(\Rightarrow A=180^0-\left(C+B\right)=180^0-\left(53^0+37^0\right)=90^0\left(tong3goctrong1tg\right)\)
Vậy tg ABC vuông tại A
a. cm △ABC ⊥ tại A:
Xét: 62 + 4,52 = 7,52
=> AB2 + AC2 = BC2
=> △ABC ⊥ tại A ( Pi-ta-go đảo)
b. sinB= AC/BC
=> sinB= 4,5/7,5 = 0,6
=>∠B = 38,87
góc C tương tự nhé!
Xét △ABC vuông tại A, đường cao AH:
=> 1/AB2 + 1/AC2 = 1/AH2 ( hệ thức lượng)
=> 1/62 + 1/4,52 = 1/AH2
AH = 3,6 ( cm)
c. S△ABC= \(\dfrac{AB.AC}{2}\)
= \(\dfrac{6.4,5}{2}\)
= 13,5 ( cm2)
Cho tam giác ABC vuông tại A, AB = 4,5 cm , AC = 6cm trên Bc lấy D sao cho CD = 2 cm , đường vuông góc BC ở D cắt AC tại E
Tính EC , EA
b ) Tính Diện tích tam giác EDC
Cho tam giác ABC có AB = 6 cm, AC = 4,5 cm và BC = 7,5 cm. a) Chứng minh tam giác ABC vuông tại A. b) Tính các góc B, C và đường cao AH của tam giác đó (Góc làm tròn đến phút, độ dài làm tròn đến chữ số thập phân thứ nhất)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)
Cho tam giác Abc vuông tại A nội tiếp đường tròn tâm O có AB=7,5 cm, đường cao AH=4,5 cm.Tính R của đường tròn tâm O
Vì ΔABC vuông tại A nội tiếp \(\left(O\right)\) nên O là trung điểm của BC
hay R=OB=OC
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=7.5^2-4.5^2=36\)
hay HB=6cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BC=\dfrac{7.5^2}{6}=9.375\left(cm\right)\)
\(\Leftrightarrow R=4.6875\left(cm\right)\)
cho tam giác ABC có AB = 6cm, AC = 4,5 cm, BC = 7,5 cm
a, Chứng minh tam giác ABC vuông
b, Tính góc B, góc C, đường cao AH
Giải
a. Xét \(\Delta ABC\) ta có :
\(AB^2+AC^2=\) \(6^2+4,5^2=56,25\) (cm)
\(BC^2=7,5^2=56,25\) (cm)
\(\Rightarrow\) \(\Delta ABC\) là tam giác vuông
b. - Áp dụng hệ thức về một số cạnh và đường cao trong tam giác vuông ta có :
AB.AC = BC.AH
\(\Leftrightarrow6.4,5=7,5.AH\)
\(\Leftrightarrow AH=\dfrac{6.4,5}{7,5}\)
\(\Leftrightarrow AH=3.6\) (cm)
- Trong \(\Delta ABH\perp H\) ta có :
sin B = \(\dfrac{AH}{AB}=\dfrac{3,6}{6}=0,6\)
\(\Rightarrow\) Góc B \(\approx\) \(37\) độ
\(\Rightarrow\) Góc C = 53 độ
Vậy AH = 3,6cm, góc B = 37 độ, góc C = 53 độ