Bài 1: Cho tam giác ABC, AB=AC=5cm; bc= 6cm tia phân giác của góc A cắt BC tại M
a, Chứng minh rằng: tam giác AMB = tam giác AMC
b, Tính độ dài AM
c, Kẻ tia phân giác của góc MAC cắt MC tại D. So sánh độ dài MC và MD?
BÀI TẬP
Bài 1. Cho tam giác ABC có AB=5cm; AC=7cm. So sánh <B và <C
Bài 2. Cho tam giác ABC có AB=3cm; AC= 4cm;BC = 5cm. So sánh các góc của
tam giác
Bài 3.Cho tam giác có <B=60 0 ; <C =40 0 . So sánh các cạnh của tam giác ABC
Bài 4. Cho tam giác ABC vuông ở A có AB= 6cm; BC = 10 cm
1/ Tính AC
2/ So sánh các góc của tam giác ABC
Bài 1: Cho tam giác abc có AB = 5cm AC = 7cm BC = 9cm. Đường phân giác AD. Tính DB, DC
Bài 2: Cho tam giác ABC vuông tại A. AB = 6cm, AC = 8cm, phân giác AD. Tính DB, DC
Bài 2 : Cho tam giác ABC có AB=3cm; AC= 4cm; BC= 5cm . So sánh các góc của tam giác ABC
Bài 3 :Cho tam giác ABC có góc B=60 độ ; góc C = 40 độ . So sánh các cạnh của tam giác ABC
Bài 4 : Cho tam giác ABC có AB=5cm ; AC= 12 cm ; BC=13 cm
a) Tam giác ABC là tam giác gì ?
b) So sánh các góc của tam giác ABC
Bài 5 : Cho tam giác ABC vuông tại A có AB=10cm ; AC= 24 cm
a) Tính độ dài cạnh BC=?
b) Tam giác ABC là tam giác gì ?
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
Bài 1:cho tam giác ABC có AB = 4cm , AC = 5cm, BC = 3cm
a)chứng minh tam giác ABC là tam giác vuông
b)so sánh các góc của tam giác ABC
Bài 2:cho tam giác ABC có AB<AC . Tia phân giác của góc A cắt BC tại D.
a)Chúng minh tam giác ABD = tam giác AED
b)So sánh BD, DC
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
Bài 1: cho tam giác abc , trung tuyến ad. Tia phân giác của góc adc cắt ab ở m tia phân giác của góc adc cắt ac ở n . Biết dm=dn. Chứng minh rằng tam giác abc là tam giác cân
Bài2: cho tam giác abc cân có ab=ac=5cm, bc=6cm. Các đường phân giác ai, bk, ch
a) tính độ dài kh
b) tính diện tích tam giác ikh
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH = 5cm. Biết CH = 6cm. tính:
a) AB, AC,BC và BH?
b) Diện tích tam giác ABC
Bài2: Cho tam giác ABC vuông tại A, đường cao AH; AB = 15cm; BC = 25cm. BTính:
a) AC,AH, HC và BH?
b) Diện tích tam giác ABC
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Bài 1. Cho tam giác ABC và tam giác MNP đồng dạng với nhau theo tỉ số 13 , 𝐴𝐵=3𝑐𝑚;𝑁𝑃=15. Tính các cạnh còn lại của hai tam giác biết chu vi tam giác ABC là 14cm.
Bài 2. Cho tam giác ABC có AB=3cm; AC=7cm và BC=5cm. Biết tam giác MPN đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5 cm. Tính các cạnh còn lại của tam giác MPN.
Bài 3. Cho tam giác ABC có AB=5cm; BC=8cm; AC=7cm. Lấy điểm D nằm trên cạnh BC sao cho BD=2cm. Qua D kẻ đường thẳng song song với AB và AC lần lượt cắt AC và AB tại F và E.
a) Chứng minh BDE đồng dạng với DCF
b) Tính chu vi tứ giác AEDF.
Bài 1: Cho tam giác ABC vuông tại A giải Tam giác ABC biết: a) Góc B= 35 độ, BC=40 cm
b) AB=70cm, AC=60cm
c) AB=6cm, góc B=60 độ
d) AB=5cm, AC=7cm
2) Cho tam giác ABC góc A =90 độ đường cao AH biết HB=25cm, HC =64cm tín số đo góc B và C
3)Tam giác ABC có góc A =90 độ, AB=21cm, ggos C =40 độ tính độ dài đường phân giác BD
4) Tam giác ABC có góc B=70 độ góc C=35 độ đường cao AH=5cm tính độ dài AB,AC,B
Bài 1: Cho tam giác MNP vuông tại N có MN=6cm, MP=10cm. Tính độ dài NP.
Bài 2; Cho tam giác ABC vuông tại A. Tính cạnh BC trong các TH sau:
a. AB=8cm; AC=6cm
b, AB=12cm; AC=16cm
c. AB=5cm; AC=12cm.
Bài 2:
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Bài 1: Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Bài 2: Cho tam giác ABC vuông tại A. Cạnh AB= 5cm đường cao AH, BH= 3cm, CH= 8cm. Tính AC.
Bài 3: Cho tam giác ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và AC= 16cm. Tính độ dài các cạnh AB=BC.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC