CMR:tổng ba số tự nhiên liên tiếp chia hết cho 3
CMR:Tổng của 4 số tự nhiên liên tiếp là 1 số không chia hết cho 4
gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
tick nhé bạn
Khẳng định nào dưới đây là sai.
1. Tích của ba số tự nhiên liên tiếp chia hết cho 3
2. Tích của ba số tự nhiên liên tiếp chia hết cho 2
3. Tích của ba số tự nhiên liên tiếp chia hết cho 6
4.Tích của ba số tự nhiên liên tiếp chia hết cho 5
khẳng định sai là câu 4 .tích của 3 số tự nhiên liên tiếp chia hết cho 5
Chứng tỏ rằng:
A. Trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2
B. Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
C. Tổng của hai số tự nhiên liên tiếp thì không chia hết cho 2
D. Tổng của ba số tự nhiên liên tiếp là 1 số chia hết cho 3
E. Tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
Chứng tỏ rằng:
a) Trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2.
b) Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3.
c) Tổng của hai số tự nhiên liên tiếp thì không chia hết cho 2
d) Tổng của ba số tự nhiên liên tiếp là 1 số chia hết cho 3
e) Tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
a)vì trong hai só tự nhiên liên tiếp có một số chẵn và số lẻ nên có 1 số chia hết cho 2.
b)TH1: Nếu số đầu tiên có dạng 3k (k thuộc N) thì bài toán giải quyết xong 3k chia hết cho 3
TH2: Nếu số đầu tiên có dạng 3k +1
Thì số đó là 3k+1,3k+2,3k+3
Mà 3k+3 chia hết cho 3 nên bài toán giải quyết xong
TH3: Nếu số đầu tiên có dạng 3k +2
Thì số đó là 3k+2,3k+3,3k+4
Mà 3k+3 chia hết cho 3 nên bài toán giải quyết xong
c)Gọi 2 số tự nhiên liên tiếp đó là a,a+1
Ta có :
a+a+1=2a+1 không chia hết cho 2
Vậy tổng 2 số tự nhiên liên tiếp không chia hết cho 2
d)Gọi 3 số tự nhiên liên tiếp đó là b,b+1,b+2
Ta có :
b+b+1+b+2= 3b+3 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
e)Gọi 4 số tự nhiên liên tiếp đó là c,c+1,c+2,c+3
Ta có :
c+c+1+c+2+c+3=4c+6 không chia hết cho 4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Chứng tỏ rằng :
a) Trong hai số tự nhiên liên tiếp có một số chia hết cho 2
b) Trong ba số tự nhiên liên tiếp có một số chia hết cho 3
c) Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
d) Tổng của ba số tự nhiên lien tiếp là một số chia hết cho ba
a; hai số tự nhiên liên tiếp có dạng: n; n + 1
Nếu n \(⋮\) 2 vậy trong hai số tự nhiên liên tiếp có một số chia hết cho 2
Nếu n = 2k + 1 thì n + 1 = 2k + 1 + 1 = 2k + (1 + 1) = 2k + 2 ⋮ 2
Từ những lập luận trên ta có hai số tự nhiên liên tiếp luôn có một số chia hết cho hai
b; Ba số tự nhiên liên tiếp có dạng: n; n + 1; n + 2
Nếu n ⋮ 3 thì trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3
Nếu n : 3 dư 1 hoặc 2 thì n có dạng: m = 3k + 1 hoặc n = 3k + 2
Trường hợp n = 3k + 1
khi đó n + 2 = 3k + 1 + 2 = 3k + (1 + 2) = 3k + 3 ⋮ 3
Trường hợp n = 3k + 2 thì n + 1 = 3k + 1 + 2 = 3k + (2 + 1) = 3k + 3
Từ những lập luận trên ta có:
Trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3
c; Bốn số tự nhiên liên tiếp có dạng:
n; n + 1; n + 2; n + 3
Khi đó tổng của bốn số tự nhiên liên tiếp là:
n + n + 1 + n + 2 + n + 3
= (n + n + n + n) + (1+ 2 + 3)
= 4n + (3+ 3)
= 4n + 6
= 4(n + 1) + 2 mà 2 không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ?
c) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3
d) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
nếu câu a và câu b có vì sao thì sẽ làm thế nào
Đáp án của mik là:..............
Nhớ k cho mik nha!
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
a,CMR trong ba số tự nhiên liên tiếp có một số chia hết cho 3
b, CM tổng của ba số tự nhiên liên tiếp chia hết cho 3
1.Trong ba số tự nhiên liên tiếp , có một số chia hết cho 3
2.Khi chia số tự nhiên a cho 24 , ta được số dư là 10 . Hỏi số a có chia hết cho 2
không ? có chia hết cho 4 không?
3. Chứng tỏ rằng:
a)Tống của ba số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
1/
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2
+ Nếu \(n⋮3\) Bài toán đã được c/m
+ Nếu n chia 3 dư 1 => \(n+2⋮3\)
+ Nếu n chia 3 dư 2 => \(n+1⋮3\)
Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau
\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)
\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)
\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4
3/
a/ Gọi 3 số TN liên tiếp là n; n+1; n+2
\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)
b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3
\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)
Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4