E=1/2+1/2mũ 2 +1/2 mũ 3+...+1 mũ 60
các bạn giúp mik với nha
cảm ơn trc
Giúp mình với A=1+ 2 mũ 2+ 2 mũ 3+...+ 2 mũ 10 . Cảm ơn trc ạ ^^
`A=1+2^2 +2^3 +...+2^10`
`2A=2+2^3 +2^4 +...+2^11`
`A=2+2^3 +2^4 +...+2^11 -1-2^2 -2^3 -...-2^10`
`A=2+2^11 -1-2^2`
`A=2+2048-1-4`
`A=2045`
Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\cdot\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=2+2^3+2^4+...+2^{11}-1-2^2-2^3-...-2^{10}\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2^{10}-2^{10}\right)+\left(2+2^{11}-1-2^2\right)\)
\(\Rightarrow A=0+0+0+...+2+2^{11}-1-2^2\)
\(\Rightarrow A=2+2^{11}-1-4\)
\(\Rightarrow A=2^{11}-3\)
MN ơi giúp mik với
A=1+2+2 mũ 2+2 mũ 3+2 mũ 4+......+2 mũ 2021.Tính A
giúp mik với mik chưa làm dc nên mik cần sự giúp đỡ của các bạn (cảm ơn bạn)
A = 1 + 2 + 22 + 23 + 24 + ..... + 22021
2A = 2 + 22 + 23 + 24 + 25 + ..... + 22022
2A - A = ( 2 + 22 + 23 + 24 + 25 + ..... + 22022 ) - ( 1 + 2 + 22 + 23 + 24 + ..... + 22021 )
A = 22022 - 1
cảm ơn bạn nhé
mà bạn ơi kết quả cuối cùng là A=2022-1
mà bạn ơi mik nhầm mik bảo nè thế kết quả cuối cùng là A=2^2021 -1 à bạn
Giúp mik nhé
Viết các biểu thức sau dưới dạng lũy thừa của 1 số hữu tỉ:
2mũ 6 . 3 mũ3
6 mũ 4 . 8 mũ 2
16 . 18
25 mũ 4 . 2 mũ 8
Mik sẽ tik cho bạn trả lời nhé
em muốn ai đó giải hộ e bài này
B=1+2+2mũ 2+2 mũ 3+...+2 mũ 2008 / 1-2 mũ 2009
\(B=\dfrac{1+2+2^2+.............................+2^{2008}}{1-2^{2009}}\)
Đặt \(N=1+2+2^2+..........+2^{2008}\)
\(\Rightarrow2N=2+2^2+2^3+.................+2^{2009}\)
2N-N=\(\left(2+2^2+2^3+............+2^{2009}\right)-\left(1+2+2^2+............+2^{2008}\right)\)
\(N=2^{2009}-1\)
Thay N vào B được
\(B=\dfrac{1-2^{2009}}{2^{2009}-1}=-1\)
Vậy .........................
Chúc bn học tốt
Giải:
\(B=\dfrac{1+2+2^2+2^3+...+2^{2018}}{1-2^{2009}}\)
Đặt \(A=1+2+2^2+2^3+...+2^{2008}\)
\(2A=2+2^2+2^3+2^4+...+2^{2009}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(A=2^{2009}-1\)
\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)
giúp mk với: tính
S=1+2+2mũ 2+2 mũ 3+...+20 mũ 20
S=1+2+22+23+...+220
2S=2+22+23+24+...+221
=>S=2S-S=221-1C
Vậy S=221-1
\(S=1+2+2^2+2^3+...+2^{20}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{21}\)
\(\Rightarrow2S-S=\left(2+2^2+...+2^{21}\right)-\left(1+2+...+2^{20}\right)\)
\(\Rightarrow S=2^{21}-1\)
S=1+2+2^2+....+2^20
=>2S=2+2^2+2^3+...+2^21
=>2S-S=2^21-1
=>S=2^21-1
M = 2 mũ 2010 - ( 2 mũ 2009 + 2 mũ 2008 + ... + 2 mũ 1 + 2 mũ 0 )
Các bạn ơi làm ơn giúp mik với !!! mik đang gấp !!! cảm ơn các bạ nhìu lắm !! ❤️❤️❤️❤️
M = 22010-(22009 + 22008+....+21+20
Đặt A =( 22009+22008+...21 +20)
Suy ra 2A = 22010+22009+22008+...22+2
Suy ra 2A-A = ( 22010+22009+22008+...+22+2) - (22009+ 22008+...+21+20)
Suy ra A= 22010-20
Suy ra M = 22010-A=22010 - 22010+20=1
Vậy M=1
Đúng nha
A=2 mũ 1 +2 mũ 2 +2 mũ 3 +2 mũ 4 +2 mũ 5 +2 mũ 6 +....+2mũ 60.Chứng minh rằng A chia hết cho 21,15
giúp mình với
bn ơi chia hết cho 21 và 15 hay là chia hết cho số 21,15 vậy?
Chứng minh A chia hết cho \(21\) \(A\) được viết dưới dạng tổng: \(A=2^{1}+2^{2}+2^{3}+\dots +2^{60}\). Để chứng minh \(A\) chia hết cho \(21\), cần chứng minh \(A\) chia hết cho \(3\) và \(7\). Chứng minh A chia hết cho \(3\) \(A\) được nhóm thành các bộ \(2\) số hạng: \(A=(2^{1}+2^{2})+(2^{3}+2^{4})+\dots +(2^{59}+2^{60})\). \(A=2(1+2)+2^{3}(1+2)+\dots +2^{59}(1+2)\). \(A=2\cdot 3+2^{3}\cdot 3+\dots +2^{59}\cdot 3\). \(A=3(2+2^{3}+\dots +2^{59})\). Vì \(A\) có thừa số \(3\), nên \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(7\) \(A\) được nhóm thành các bộ \(3\) số hạng: \(A=(2^{1}+2^{2}+2^{3})+(2^{4}+2^{5}+2^{6})+\dots +(2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2})+2^{4}(1+2+2^{2})+\dots +2^{58}(1+2+2^{2})\). \(A=2\cdot 7+2^{4}\cdot 7+\dots +2^{58}\cdot 7\). \(A=7(2+2^{4}+\dots +2^{58})\). Vì \(A\) có thừa số \(7\), nên \(A\) chia hết cho \(7\). Vì \(A\) chia hết cho \(3\) và \(A\) chia hết cho \(7\), và \(3\) và \(7\) là hai số nguyên tố cùng nhau, nên \(A\) chia hết cho \(3\cdot 7=21\). Chứng minh A chia hết cho \(15\) Để chứng minh \(A\) chia hết cho \(15\), cần chứng minh \(A\) chia hết cho \(3\) và \(5\). Chứng minh A chia hết cho \(3\) Phần này đã được chứng minh ở trên. \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(5\) \(A\) được nhóm thành các bộ \(4\) số hạng: \(A=(2^{1}+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8})+\dots +(2^{57}+2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2}+2^{3})+2^{5}(1+2+2^{2}+2^{3})+\dots +2^{57}(1+2+2^{2}+2^{3})\). \(A=2(1+2+4+8)+2^{5}(1+2+4+8)+\dots +2^{57}(1+2+4+8)\). \(A=2\cdot 15+2^{5}\cdot 15+\dots +2^{57}\cdot 15\). \(A=15(2+2^{5}+\dots +2^{57})\). Vì \(A\) có thừa số \(15\), nên \(A\) chia hết cho \(15\). Kết luận \(A\) chia hết cho \(21\) và \(A\) chia hết cho \(15\).
CMR:
1/2mũ 2 +1/3 mũ 2+1/4 mũ 2+...+1/100 mũ 2<1
ta có 1/2mũ 2 +1/3 mũ 2+1/4 mũ 2+...+1/100 mũ 2=1/2.2+1/3.3+1/4.4+...+1/100.100<1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101=1/2.3-1/100.101=1/6-1/10100=tự tính nhé
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1000^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{999.1000}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)
\(=1-\dfrac{1}{1000}=\dfrac{999}{1000}< 1\left(đpcm\right)\)
1 - 1 phần 2 mũ 2 x 1 - 1 phần 3 mũ 2 x 1 - 1 phần 4 mũ 2 x .... x 1 - 1 phần 200 mũ 2 so sánh với 1 phần 2
các bạn giải thích rõ ràng hộ mik nhé . Cảm ơn rất nhiều
Ta có: \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\ldots\cdot\left(1-\frac{1}{200^2}\right)\)
\(=\left(1-\frac12\right)\left(1-\frac13\right)\cdot\ldots\cdot\left(1-\frac{1}{200}\right)\left(1+\frac12\right)\left(1+\frac13\right)\cdot\ldots\cdot\left(1+\frac{1}{200}\right)\)
\(=\frac12\cdot\frac23\cdot\ldots\cdot\frac{199}{200}\cdot\frac32\cdot\frac43\cdot\ldots\cdot\frac{201}{200}=\frac{1}{200}\cdot\frac{201}{2}=\frac{201}{400}>\frac{200}{400}=\frac12\)