\(\frac{x}{5}\)+ \(\frac{7}{y}\)=\(\frac{-10}{25}\)
1) \(\frac{24}{-12}=\frac{x}{5}=\frac{-y}{3}\)Tìm x và y
2) \(\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-5}{25}\le\frac{x}{10}< \frac{-3}{4}+\frac{4}{14}+\frac{-2}{8}+\frac{-3}{5}+\frac{5}{7}\)Tìm x
3) \(\frac{8.x+18}{2.x+6}\)Tìm x
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
1
fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffffEz lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài 3:
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)
Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)
Vậy: (x + y + z)2 = x2 + y2 + z2
Tìm các số x,y,z biết rằng
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(\frac{10}{x-5}=\frac{6}{y-9}=\frac{14}{z-21}\) và xyz= 6720
\(\frac{2x-3}{2x-5}=\frac{2x+5}{2x+8}\)
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\) và \(2x^3-1=15\)
a)\(\frac{-5}{7}.\left(\frac{2}{11}+\frac{9}{5}\right)+\left(\frac{-9}{11}+\frac{4}{5}\right).\frac{5}{7}\) b)\(2\frac{2}{5}.\frac{5}{9}+1\frac{4}{9}.\frac{12}{5}-1,8.\frac{10}{3}\)c)\(\frac{-7}{25}.\frac{11}{13}+\frac{-7}{25}.\frac{4}{13}-\frac{2}{13}.\frac{-7}{25}\)
\(\frac{4}{25}.\frac{5}{9}+\frac{-4}{25}.\frac{10}{3}+5\frac{7}{9}\)
\(=\frac{4}{25}\left(\frac{5}{9}+\frac{-10}{3}\right)+\frac{52}{9}\)
\(=\frac{4}{25}.\frac{-25}{9}+\frac{52}{9}\)
\(=\frac{-4}{9}+\frac{52}{9}=\frac{16}{3}\)
\(\frac{4}{25}\cdot\frac{5}{9}+\frac{-4}{25}\cdot\frac{10}{3}+5\frac{7}{9}\)
\(=\frac{4}{45}-\frac{8}{15}+\frac{52}{9}\)
\(=\frac{4}{45}-\frac{24}{45}+\frac{260}{45}\)
\(=\frac{240}{45}=\frac{16}{3}\)
Mấy bn ơi, giúp mk vs
Tìm x, biết:
\(x-0,27=\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{25\times\left(\frac{5}{84}+\frac{3}{180}+\frac{4}{285}\right)}\)
Tính P;
\(P=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\times230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right)\div\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
Ai đúng mk tích, cảm ơn các bn
Tìm x :
x - 0,27 = \(\frac{73}{100}\)
x = \(\frac{73}{100}+0,27\)
x = 1
Cậu P khó quá mik chưa nghĩ ra cách tính nhanh nhất !
Cậu tự giải nhé !
Hok tốt
\(x-0,27=\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{25\times\left(\frac{5}{84}+\frac{3}{180}+\frac{4}{285}\right)}.\)
\(x-0,27=\frac{\frac{146}{105}+\frac{73}{285}}{25\times\left(\frac{8}{105}+\frac{4}{285}\right)}\)
\(x-0,27=\frac{\frac{219}{133}}{25\times\frac{12}{133}}\)
\(x-0,27=\frac{\frac{219}{133}}{\frac{300}{133}}\)
\(x-0,27=0,73\)
\(x=0,73+0,27\)
\(x=1\)
Rút gọn A=\(\left(\frac{5\sqrt{x}+50}{x+5\sqrt{x}}+\frac{2\sqrt{x}-10}{\sqrt{x}}+\frac{x}{5\sqrt{x}+25}\right).\frac{7}{15+3\sqrt{x}}\)
Tìm x,y,x biết
\(a.\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và \(x+y+z=49\)
\(b.\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và \(2x+3y-z=186\)
\(c.x:y:z=12:9:5\)và \(xyz=20\)
\(d.\frac{10}{x-5}=\frac{6}{y-9}=\frac{14}{z-21}\)và \(xyz=6720\)
\(e.\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\)và \(2x^3-1=15\)
\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49
Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)
Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)
\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186
Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)
\(c,x:y:z=12:9:5\)và xyz = 20
Ta có : \(x:y:z=12:9:5\)hay \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)
Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=12k\\y=9k\\z=5k\end{cases}}\)
\(\Leftrightarrow xyz=12k\cdot9k\cdot5k=540k^3\)
\(\Leftrightarrow xyz=540k^3\)
\(\Leftrightarrow540k^3=xyz\)
\(\Leftrightarrow540k^3=20\)
\(\Leftrightarrow k^3=\frac{20}{540}=\frac{1}{27}\Leftrightarrow k=\frac{1}{3}\)
Vậy : \(\hept{\begin{cases}x=12\cdot\frac{1}{3}\\y=9\cdot\frac{1}{3}\\z=5\cdot\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=\frac{5}{3}\end{cases}}\)
bài 1 tìm x
\(x-25\%x=\frac{1}{2}\)
bài 2 tính hợp lý
\(a,(\frac{-4}{5}+\frac{4}{3})+(\frac{-5}{4}+\frac{14}{5})-\frac{7}{3}\) \(b,\frac{8}{3}\times\frac{2}{5}\times\frac{3}{10}\times10\times\frac{19}{92}\)\(c,\frac{-5}{7}\times\frac{2}{11}+\frac{-5}{7}\times\frac{9}{14}+1\frac{5}{7}\)
Bài 1: Tìm \( x \)
\[
x - \frac{25\%}{100}x = \frac{1}{2}
\]
Để giải phương trình này, trước hết chúng ta phải chuyển đổi phần trăm thành dạng thập phân:
\[
\frac{25\%}{100} = 0.25
\]
Phương trình ban đầu trở thành:
\[
x - 0.25x = \frac{1}{2}
\]
Tổng hợp các hạng tử giống nhau:
\[
1x - 0.25x = \frac{1}{2}
\]
\[
0.75x = \frac{1}{2}
\]
Giải phương trình ta được:
\[
x = \frac{\frac{1}{2}}{0.75} = \frac{2}{3}
\]
Vậy, \( x = \frac{2}{3} \)
Bài 2: Tính hợp lý
a) \[
\frac{5}{-4} + \frac{3}{4} + \frac{4}{-5} + \frac{14}{5} - \frac{7}{3}
\]
Chúng ta cần tìm một mẫu số chung cho tất cả các phân số. Mẫu số chung nhỏ nhất là 60.
\[
= \frac{75}{-60} + \frac{45}{60} + \frac{-48}{60} + \frac{168}{60} - \frac{140}{60}
\]
\[
= \frac{75 + 45 - 48 + 168 - 140}{60}
\]
\[
= \frac{100}{60} = \frac{5}{3}
\]
b) \[
\frac{8}{3} \times \frac{2}{5} \times \frac{3}{10} \times \frac{10}{92} \times \frac{19}{92}
\]
Tích của các phân số là:
\[
= \frac{8 \times 2 \times 3 \times 10 \times 19}{3 \times 5 \times 10 \times 92 \times 92}
\]
\[
= \frac{9120}{4131600} = \frac{57}{25825}
\]
c) \[
\frac{5}{7} \times \frac{2}{11} + \frac{5}{7} \times \frac{9}{14} + \frac{1}{5}
\]
Tích của các phân số là:
\[
= \frac{10}{77} + \frac{45}{98} + \frac{1}{5}
\]
\[
= \frac{980}{7546} + \frac{3485}{7546} + \frac{15092}{75460}
\]
\[
= \frac{2507}{7546}
\]