Tìm a để phương trình a^2 (3x-1)-a(2x+3)=x-4 có nghiệm duy nhất lớn hơn 1/3 .
4) Tìm a thuộc Z để phương trình sau có nghiệm duy nhất là số nguyên
a^2x+2x=3(a+1-ax)
5) Tìm m để phương trình: (m^2+5)x=2-2mx
có nghiệm duy nhất đạt giá trị lớn nhất
6) Tìm tất cả các số thực a không âm sao cho phương trình: (a^2-4)x=a^2-ma+16 (ẩn x)
có nghiệm duy nhất là số nguyên
Tìm a để phương trình sau:
b) a2 (x-3)=a(x-7)+2(x+2) có vô số nghiệm
c) a2 (x-1)-a(7x+2)=8x+1 có nghiệm duy nhất lớn hơn -2
d) a(x+3)= 5 - x có nghiệm duy nhất là nghiệm nguyên khi a là số nguyên
b: \(\Leftrightarrow a^2x-3a^2=ax-7a+2x+4\)
\(\Leftrightarrow a^2x-ax-2x=3a^2-7a+4\)
\(\Leftrightarrow x\left(a-2\right)\left(a+1\right)=\left(3a-4\right)\left(a-1\right)\)
Để phương trình có vô số nghiệm thì \(\left\{{}\begin{matrix}\left(a-2\right)\left(a+1\right)=0\\\left(3a-4\right)\left(a-1\right)=0\end{matrix}\right.\Leftrightarrow a\in\varnothing\)
d: \(\Leftrightarrow ax+3a-5+x=0\)
=>x(a+1)=5-3a
Để phương trình có nghiệm duy nhất là số nguyên thì a+1<>0
hay a<>-1
Cho phương trình m(x-4)-2x=4(1-m) (với m là tham số)
a) Giải phương trình với m=0, m=-1, m=-3
b)Tìm m để phương trình vô nghiệm
c)Tìm m để phương trình có vô số nghiệm
d)Tìm m để phương trình có nghiệm dương duy nhất
e)Tìm m để phương trình có nghiệm duy nhât nhỏ hơn 1
Tìm m để phương trình 2mx-3=3x+m. (1) a, Tìm m để phương trình (1) nhận x=1/2 làm nghiệm b, Tìm m để phương trình (1) có nghiệm duy nhất, tính nghiệm theo m
a)Bạn chỉ cần bê 1/2 vào tìm m bình thường
b)nx-2+n=3x
\(\Leftrightarrow\left(m-3\right)x+m-2=0\)
Để pt có nghiệm duy nhất thì m-3 khác 0 suy ra m khác 0
Khi đó nghiệm duy nhất là x=-m+2/m-3
Cho hai phương trình:
\(x^3+3x^2+2x=0\) và \(\left(x+1\right)\left(x^2+2x+1+a\right)=0\) (với x là ẩn số). Tìm các giá trị của a để hai phương trình trên chỉ có một nghiệm chung duy nhất
\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)
Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)
\(\Rightarrow a\ne-1;-9\)
(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)
\(x^3+3x^2+2x=0\left(1\right)\)
\(\Leftrightarrow x\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow x\left(x^2+x+2x+2\right)=0\)
\(\Leftrightarrow x\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy phương trình (1) có nghiệm \(x=0;x=-2;x=-1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+1+a\right)=0\left(2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Leftrightarrow x=-1\\x^2+2x+1+a=0\end{matrix}\right.\)
\(\Rightarrow x=-1\) là (1) nghiệm của phương trình (2)
Đặt \(F\left(x\right)=\left(x+1\right)\left(x^2+2x+1+a\right)\)
Có phương trình (1) và (2) có nghiệm chung là =1
Để (1) và (2) có 1 nghiệm chung duy nhất
Thì \(\left\{{}\begin{matrix}F\left(0\right)\ne0\\F\left(-2\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1+a\right)\ne0\\\left(-2+1\right)\left(4-4+1+a\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\-\left(a+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\a\ne-1\end{matrix}\right.\)
-Chúc bạn học tốt-
Bài 4:
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0.
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2.
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m - 2 = 0
à bài này a nhớ (hay mất điểm ở bài này) ;v
xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)
a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)
Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)
b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)
Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)
c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)
Chắc vậy :v
1/ Với giá trị nào của x thì 2 bất phương trình sau đây tương đương: (a-1)x - a+3>0 và ( a+1)x-a+2>0
2/ Bất phương trình: 5x/5 - 13/21 + x/15 < 9/25- 2x/35 có nghiệm là....
3/ Bất phương trình: 5x-1 < 2x/5 + 3 có nghiệm là...
4/ Bất phương trình: (x+4/x^2-9) -(2/x+3) < (4x/3x-x^2) có nghiệm nguyên lớn nhất là...
5/ Các nghiệm tự nhiên bé hơn 4 của bất phương trình (2x/5) -23 < 2x -16
6/ Các nghiệm tự nhiên bé hơn 6 của bất phương trình: 5x - 1/3 > 12 - 2x/3
7/ Bất phương trình: 2(x-1) - x > 3(x-1) - 2x-5 có tập nghiệm là...
8/ Bất phương trình: (3x+5/2) -1< (x+2/3)+x có tập nghiệm là...
9/ Bất phương trình: /x+2/ - /x-1/ < x - 3/2 có tập nghiệm là
10/ Bất phương trình: /x+1/ + /x-4/ > 7 có nghiệm nguyên dương nhỏ nhất là....
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Mình không biết sin lỗi vạn
tìm a để phương trình sau : c) a^2 (x-1)-a(7x+2)=8x+1 có nghiệm duy nhất lớn hơn -2
\(a^2\left(x-1\right)-a\left(7x+2\right)-8x=1\)
\(\Leftrightarrow a^2x-a^2-7ax-2a-8x=1\)
\(\Leftrightarrow x\left(a^2-7a-8\right)=1+a^2+2a\)
\(\Rightarrow a^2-7a-8\ne0\Leftrightarrow a\ne8;a\ne-1\)
\(\Rightarrow x=\dfrac{a^2+2a+1}{a^2-7a-8}=\dfrac{\left(a+1\right)^2}{\left(a-8\right)\left(a+1\right)}=\dfrac{a+1}{a-8}>-2\Leftrightarrow\dfrac{a+1}{a-8}+2>0\Leftrightarrow\dfrac{a+1+2a-16}{a-8}=\dfrac{3a-15}{a-8}>0\Leftrightarrow\left[{}\begin{matrix}a>8\\a< 5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a>8\\a< 5\left(a\ne-1\right)\end{matrix}\right.\)
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0