Cho tam giác ABC vuông tại A,biết góc B=30 độ.Chứng minh rằng AC=\(\dfrac{1}{2}\)BC
CHo tam giác ABC, có BH vuông góc với AC tại H và BH = 1/2 AC và BAC = 75 độ.Chứng minh rằng tam giác ABC cân tại C
Bạn tự vẽ hình nhé:
Sơ lượt cách giải:
Dựng tam giác đều ABE sao cho điểm E nằm cùng phía với điểm C đối với đường thẳng AB.
Vì góc BAC = 750 > góc BAE =600 nên tia AE nằm giữa hai tia AB và AC.
Gọi K là trung điểm của AC suy ra AK = KC =BH (gt)
Vì góc BAC = 75 độ nên góc KAE = góc HBA = 15 độ.
Suy ra tam giác HAB = tam giác KEA (c-g-c)
Suy ra góc K = góc H =90 độ
Suy ra tam giác AEC cân tại E, suy ra góc ACE = 15 độ. Suy ra góc AEC = 150 độ.
Suy ra góc BEC = 150 độ (Vì = 360 độ - góc AEC -góc AEB =360 -150-60)
Suy ra tam giác AEC = tam giác BEC (c-g -c)
Suy ra góc BCE =15 độ suy ra góc ACB = 30 độ
Suy ra góc ABC = 75 độ suy ra tam giác ABC cân tại C
Bài 6. Cho tam giác ABC vuông tại A, góc B = 30 độ. Lấy điểm D thuộc cạnh BC sao cho góc BAD bằng 30 độ. Chứng minh rằng:
a) Tam giác ADC là tam giác đều
b) AC = \(\dfrac{1}{2}\)BC
a, Ta có:
ADC=ˆA−ˆDAB=90o−30o=60o
Mà
Nên
Do đó là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: là tam giác đều
⇒AD=DC=AC(1)
Mà do AD là trung tuyến của trên AC nên
BD=CD=12BC
Cho tam giác ABC vuông tại A, góc B=30° . Chứng minh rằng AC = 1/2 BC.
Cho tam giác ABC vuông tại A, Kẻ AH vuông góc BC. Tia phân giác của góc B cắt AH tại D, cắt AC tại E
a) Chứng minh: ▲ ABE ∼ ▲HBD
b) Tính AH biết AB=6cm, AC = 8cm
c) Kẻ EK ⊥ BC. Chứng minh rằng \(\dfrac{EK}{AH}\)=\(\dfrac{CE}{CA}\)
Cho tam giác ABC vuông tại A, Kẻ AH vuông góc BC. Tia phân giác của góc B cắt AH tại D, cắt AC tại E
a) Chứng minh: ▲ ABE ∼ ▲HBD
b) Tính AH biết AB=6cm, AC = 8cm
c) Kẻ EK ⊥ BC. Chứng minh rằng \(\dfrac{EK}{AH}\)=\(\dfrac{CE}{CA}\)
a: Xét ΔBAE vuông tại A và ΔBHD vuông tại H có
góc ABE=góc HBD
=>ΔBAE đồng dạng với ΔBHD
b: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
Bài 1: Tam giác ABC cân tại A, góc B=72 độ.Chứng minh AB^2=BC^2+AC.BC
Bài 2:Tam giác ABC vuông tại A, phân giác BE, CF cắt nhau tại I.Chứng minh BE/BI.CI/CF=1/2
Cho tam giác ABC vuông tại A có BD là tia phân giác của góc B ( D thuộc AC).Chứng minh rằng :\(\dfrac{B}{2}\) =\(\dfrac{AC}{BC+AB}\)
CMR : tan\(\dfrac{B}{2}=\dfrac{AC}{BC+AB}\) nhé mình ghi thiếu
Theo tính chất phân giác:
\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
\(\Rightarrow tan\dfrac{B}{2}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}\) (đpcm)
Cho tam giác ABC vuông tại A có góc B bằng 30 độ . Chứng minh rằng AC= 1/2 . BC
GIẢI
Xét tam giác ABC vuông tại A có góc B = 30 độ
Trên tia đối của tia AC lấy điểm D sao cho AD = AC
Tam giác ABD = tam giác ABC ( c.g.c)
=> BD = BC ( 2 cạnh tương ứng )
=> góc ABD = góc ABC ( 2 góc tương ứng )
Tam giác BDC cân tại B có góc DBC có 60o nên là tam giác đều .
Do đó AC= 1/2 BC
cho tam giác ABC vuông tại A có góc B = 30 độ. Chứng minh rằng BC =2. AC
Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}\)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{1}{2}\)
hay BC=2AC
Xét \(\Delta\) \(ABC \) ta có :
\(\widehat{A} + \widehat{B} + \widehat{C} = 180^0\)
\(\rightarrow 90^0 + \widehat{B} + 30^0 = 180^0 \)
\(\widehat{B} = 180^0 - 30^0 - 90^0 = 180^0 - 120^0 = 60^0 \)
Tỉ số của \(\widehat{A}\) với \(\widehat{B}\) là :
\(\dfrac{\widehat{A}}{\widehat{B}}\) \(= \dfrac{30^0}{60^0} = \dfrac{1}{2}\)
\(\rightarrow BC = \dfrac{1}{2}AB\) \(( đpcm ) \)