Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Snow Princess
Xem chi tiết
Akai Haruma
2 tháng 5 2018 lúc 22:26

Lời giải:

Ta có:

\(\left\{\begin{matrix} \frac{1}{13}< \frac{1}{12}\\ \frac{1}{14}< \frac{1}{12}\\ \frac{1}{15}< \frac{1}{12}\end{matrix}\right.\Rightarrow \frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{3}{12}=\frac{1}{4}(1)\)

\(\left\{\begin{matrix} \frac{1}{61}< \frac{1}{60}\\ \frac{1}{62}< \frac{1}{60}\\ \frac{1}{63}< \frac{1}{60}\end{matrix}\right.\Rightarrow \frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{3}{60}=\frac{1}{20}(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}\)

Hay \( \frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)

Ta có đpcm.

chú tuổi gì
3 tháng 5 2018 lúc 9:57

Đặt A là biểu thức đó

Ta có:

\(\dfrac{1}{13}< \dfrac{1}{12};\dfrac{1}{14}< \dfrac{1}{12};\dfrac{1}{15}< \dfrac{1}{12}\)

\(\Rightarrow\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}\)

Ta cũng có

\(\dfrac{1}{61}< \dfrac{1}{60};\dfrac{1}{62}< \dfrac{1}{60};\dfrac{1}{63}< \dfrac{1}{60}\)

\(\Rightarrow\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

\(\Rightarrow\)dpcm

Trí Phạm
Xem chi tiết
No Name
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
29 tháng 4 2017 lúc 21:44

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

Phạm Thanh Hằng
30 tháng 4 2017 lúc 8:27

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

Phạm Thanh Hằng
30 tháng 4 2017 lúc 8:30

có gì sai xin mấy bạn chỉ bảongaingung!!!

Jenny Jenny
Xem chi tiết
Hoang Hung Quan
3 tháng 5 2017 lúc 21:17

Giải:

Ta có:

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét:

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)

Tanya
Xem chi tiết
Tóc Em Rối Rồi Kìa
27 tháng 3 2018 lúc 8:10

\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{5}+\dfrac{1}{13}\cdot3+\dfrac{1}{61}\cdot3\\ =\dfrac{1}{5}+\dfrac{3}{13}+\dfrac{3}{61}< \dfrac{1}{5}+\dfrac{3}{12}+\dfrac{3}{60}=\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

=> Điều phải chứng minh

Nguyễn Thị Phương Linh
Xem chi tiết
ngo tuan duc
9 tháng 5 2018 lúc 21:36

chứng tỏ j vậy bạn

Triều Nguyễn Quốc
Xem chi tiết
Võ Nguyễn Mai Hương
Xem chi tiết
Nguyễn Thanh Hằng
4 tháng 5 2017 lúc 16:42

Ta có :

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét :

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

Hoàng Thị Xuân Mai
Xem chi tiết
Nguyễn Thanh Hằng
30 tháng 4 2017 lúc 23:47

Ta có :

\(B=1+\dfrac{1}{2}+\dfrac{1}{3}+........+\dfrac{1}{63}\)

Ta thấy :

\(1=1\)

\(\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{1}{1+1}+\dfrac{1}{1+2}< \dfrac{2}{1+1}=\dfrac{2}{2}=1\)

\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}=\dfrac{1}{3+1}+\dfrac{1}{3+2}+\dfrac{1}{3+3}+\dfrac{1}{3+4}< \dfrac{4}{3+1}=\dfrac{4}{4}=1\)

\(\dfrac{1}{8}+\dfrac{1}{9}+...+\dfrac{1}{15}=\dfrac{1}{7+1}+\dfrac{1}{7+2}+....+\dfrac{1}{7+8}< \dfrac{8}{7+1}=\dfrac{8}{8}=1\)

\(\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{31}=\dfrac{1}{15+1}+\dfrac{1}{15+2}+...+\dfrac{1}{15+16}< \dfrac{16}{15+1}=\dfrac{16}{16}=1\)

\(\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{63}=\dfrac{1}{31+1}+\dfrac{1}{31+2}+...+\dfrac{1}{31+32}< \dfrac{32}{31+1}=\dfrac{32}{32}=1\)

\(\Rightarrow B< 1+1+....+1\) (\(6\) số 1)

\(\Rightarrow B>6\rightarrowđpcm\)