Cho x,y la hai so thoa man:ax+cy=c,bx+cy=a,cx+ay=b.Chung minh rang:a3+b3+c3=3abc
Cho hai số x,y thỏa mãn ax+by=c; bx+cy=a; cx+ay=b. Chứng minh a3+b3+c3=3abc.
Lời giải:
\(\left\{\begin{matrix} ax+by=c\\ bx+cy=a\\ cx+ay=b\end{matrix}\right.\Rightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(\Rightarrow x(a+b+c)+y(a+b+c)=a+b+c\)
\(\Rightarrow (x+y-1)(a+b+c)=0\)
Vì $x,y$ luôn thỏa mãn nên \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
Khi đó:
\(a^3+b^3+c^3=a^3+3ab(a+b)+b^3-3ab(a+b)+c^3\)
\(=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)
Ta có đpcm.
Cho x,y là 2 số thỏa mãn {ax+by=c;bx+cy=a;cx+ay=b}. Chứng minh : a3+b3+c3=3abc
Cho x,y là hai số thực thỏa mãn \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\)
Chứng minh rằng : \(a^3+b^3+c^3=3abc\)
#)Giải :
Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)
\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)
\(\Rightarrowđpcm\)
Bài giải thiếu trường hợp \(x+y-1=0\) rồi
#)Góp ý :
alibaba nguyễn hình như đề bài yêu cầu cm thì chỉ cần cm thui là đc chứ ???
Biết ax+by=c ; bx+cy=a ; cx+ay=b
Chứng minh rằng : a^3+b^3+c^3=3abc
\(\left\{{}\begin{matrix}ax+by=c\\bx+cy=a\\cx+ay=b\end{matrix}\right.\)
Cộng đại số => \(ax+by+bx+cy+cx+ay=a+b+c\)
<=>\(\left(a+b+c\right)x+\left(a+b+c\right)y=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)-\left(a+b+c\right)=0\)
<=>\(\left(a+b+c\right)\left(x+y-1\right)=0\)
+TH1:\(\left(a+b+c\right)=0\)
=>\(a+b=-c\)
=>\(\left(a+b\right)^3=-c^3\)
=>\(a^3+b^3+3a^2b+3ab^2=-c^3\)
=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)
=>\(a^3+b^3+c^3=-3ab\left(a+b\right)\)
Mà a+b=-c => -3ab(a+b)=-3ab(-c)=3abc
=>\(a^3+b^3+c^3=3abc\)
+TH2:x+y=1
<=>y=1-x
=>\(\left\{{}\begin{matrix}ax+b\left(1-x\right)=c\\bx+c\left(1-x\right)=a\\cx+a\left(1-x\right)=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ax+b-bx=c\\bx+c-cx=a\\cx+a-ax=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(a-b\right)x=c-b\\\left(b-c\right)x=a-c\\\left(c-a\right)x=b-a\end{matrix}\right.\)
Nếu \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)
=>a=b=c
\(\Rightarrow a^3+b^3+c^3=3a^3\\ 3abc=3a^3\\ \Rightarrow a^3+b^3+c^3=3abc\)
Nếu \(\left\{{}\begin{matrix}a-b\ne0\\b-c\ne0\\c-a\ne0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=\dfrac{c-b}{a-b}\left(1\right)\\x=\dfrac{a-c}{b-c}\left(2\right)\\x=\dfrac{b-a}{c-a}\end{matrix}\right.\)
Ta có : (1)=(2)=x suy ra \(\dfrac{c-b}{a-b}=\dfrac{a-c}{b-c}\Rightarrow\dfrac{b-c}{b-a}=\dfrac{a-c}{b-c}\Rightarrow\left(b-c\right)\left(b-c\right)=\left(a-c\right)\left(b-a\right)^{ }\Rightarrow b^2-2bc+c^2=a^2+ab-bc+ca\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\\ \\ \\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=>a=b=c(đưa về trường hợp như trên)
cho x/a=y/b=z/c hãy chứng minh bz-cy/a=cx-az/b=ay-bx/c
bn chứng minh điều ngược lại đúng và trong đáp án quyển SBT đấy
Cho biết : ax +by=c
bx+cy=a
cx +ay=b
Cm a^3+b^3+c^3=3abc
cho \(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\) chứng minh rằng :\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Ta có :
\(\dfrac{cy-bx}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\Rightarrow\dfrac{cy-bz}{x}=0\) \(\Rightarrow cy=bz\) \(\Rightarrow\) \(\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)
\(\Rightarrow\dfrac{az-cx}{y}=0\) \(\Rightarrow az=cx\) \(\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)
Từ (1) và (2) suy ra : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Biết bz-cy/a = cx-az/b = ay-bx/c . Chứng minh rằng x : y : z = a : b : c
ở đây nha bn: https://hoc24.vn/hoi-dap/question/402510.html?pos=1029041
1 ) Cho bz-cy/a = cx-az/b = ay-bx/c
Chứng minh x; y; z tỉ lê với a;b;c
\(\frac{bz-cy}{a}\)= \(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-acy}{a^2}\)=\(\frac{bcx-baz}{b^2}\)= \(\frac{cay-cbx}{c^2}\)
Áp dụng t/c ãy tỉ số bằng nhau, ta có: