Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Huyền
Xem chi tiết
Akai Haruma
23 tháng 9 2018 lúc 23:28

Lời giải:

\(\left\{\begin{matrix} ax+by=c\\ bx+cy=a\\ cx+ay=b\end{matrix}\right.\Rightarrow ax+by+bx+cy+cx+ay=c+a+b\)

\(\Rightarrow x(a+b+c)+y(a+b+c)=a+b+c\)

\(\Rightarrow (x+y-1)(a+b+c)=0\)

Vì $x,y$ luôn thỏa mãn nên \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

Khi đó:

\(a^3+b^3+c^3=a^3+3ab(a+b)+b^3-3ab(a+b)+c^3\)

\(=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)

Ta có đpcm.

Huy Dang Quang
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
T.Ps
1 tháng 8 2019 lúc 9:20

#)Giải :

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)

\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)

\(\Rightarrowđpcm\)

alibaba nguyễn
1 tháng 8 2019 lúc 9:25

Bài giải thiếu trường hợp \(x+y-1=0\) rồi

T.Ps
1 tháng 8 2019 lúc 9:29

#)Góp ý :

alibaba nguyễn hình như đề bài yêu cầu cm thì chỉ cần cm thui là đc chứ ???

Hà Thị Quỳnh
Xem chi tiết
Nguyễn Gia Huy
28 tháng 2 2023 lúc 20:21

\(\left\{{}\begin{matrix}ax+by=c\\bx+cy=a\\cx+ay=b\end{matrix}\right.\)

Cộng đại số => \(ax+by+bx+cy+cx+ay=a+b+c\)

<=>\(\left(a+b+c\right)x+\left(a+b+c\right)y=a+b+c\)

<=>\(\left(a+b+c\right)\left(x+y\right)=a+b+c\)

<=>\(\left(a+b+c\right)\left(x+y\right)-\left(a+b+c\right)=0\)

<=>\(\left(a+b+c\right)\left(x+y-1\right)=0\)

+TH1:\(\left(a+b+c\right)=0\)

=>\(a+b=-c\)

=>\(\left(a+b\right)^3=-c^3\)

=>\(a^3+b^3+3a^2b+3ab^2=-c^3\)

=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)

=>\(a^3+b^3+c^3=-3ab\left(a+b\right)\)

Mà a+b=-c => -3ab(a+b)=-3ab(-c)=3abc

=>\(a^3+b^3+c^3=3abc\)

+TH2:x+y=1

<=>y=1-x

=>\(\left\{{}\begin{matrix}ax+b\left(1-x\right)=c\\bx+c\left(1-x\right)=a\\cx+a\left(1-x\right)=b\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}ax+b-bx=c\\bx+c-cx=a\\cx+a-ax=b\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(a-b\right)x=c-b\\\left(b-c\right)x=a-c\\\left(c-a\right)x=b-a\end{matrix}\right.\)

Nếu \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)

=>a=b=c 

\(\Rightarrow a^3+b^3+c^3=3a^3\\ 3abc=3a^3\\ \Rightarrow a^3+b^3+c^3=3abc\)

Nếu \(\left\{{}\begin{matrix}a-b\ne0\\b-c\ne0\\c-a\ne0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=\dfrac{c-b}{a-b}\left(1\right)\\x=\dfrac{a-c}{b-c}\left(2\right)\\x=\dfrac{b-a}{c-a}\end{matrix}\right.\)

Ta có : (1)=(2)=x  suy ra \(\dfrac{c-b}{a-b}=\dfrac{a-c}{b-c}\Rightarrow\dfrac{b-c}{b-a}=\dfrac{a-c}{b-c}\Rightarrow\left(b-c\right)\left(b-c\right)=\left(a-c\right)\left(b-a\right)^{ }\Rightarrow b^2-2bc+c^2=a^2+ab-bc+ca\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\\ \\ \\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=>a=b=c(đưa về trường hợp như trên)

Đỗ Thị Ngọc An
Xem chi tiết
Lightning Farron
7 tháng 1 2017 lúc 8:11

bn chứng minh điều ngược lại đúng và trong đáp án quyển SBT đấy

Tiểu Thư Ma Kết
Xem chi tiết
TFBoys
5 tháng 8 2017 lúc 21:42

có điều kiện x, y > 0 ko bạn?

Moon
Xem chi tiết
Bùi Minh Anh
8 tháng 8 2021 lúc 20:16

Ta có :

\(\dfrac{cy-bx}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)

\(\Rightarrow\dfrac{cy-bz}{x}=0\) \(\Rightarrow cy=bz\) \(\Rightarrow\) \(\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)

\(\Rightarrow\dfrac{az-cx}{y}=0\) \(\Rightarrow az=cx\) \(\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)

Từ (1) và (2) suy ra : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Minh Trần
Xem chi tiết
Linh Nhi
8 tháng 8 2019 lúc 17:21

ở đây nha bn: https://hoc24.vn/hoi-dap/question/402510.html?pos=1029041

Phạm Thị Mỹ Duyên
Xem chi tiết
Ran Mori
16 tháng 10 2018 lúc 12:43

\(\frac{bz-cy}{a}\)\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-acy}{a^2}\)=\(\frac{bcx-baz}{b^2}\)\(\frac{cay-cbx}{c^2}\)

Áp dụng t/c ãy tỉ số bằng nhau, ta có: