Tìm số tự nhiên nhỏ nhất sao cho khi chia nó cho 17 dư 4 , chia nó cho 19 dư 11
Tìm số tự nhiên nhỏ nhất sao cho khi chia nó cho 17 dư 4 , chia nó cho 19 dư 11
tìm số tự nhiên nhỏ nhất sao cho khi chia nó cho 17 dư 4, cho 19 dư 11
Gọi tt là số tự nhiên cần tìm.
t:15t:15 dư 5⇒t=17m+55⇒t=17m+5
t:19t:19 dư 11⇒t=19n+1111⇒t=19n+11
Do đó:
t+216=17m+221⋮17t+216=17m+221⋮17
t+216=17n+2280⋮19t+216=17n+2280⋮19
⇒t+216⋮17⇒t+216⋮17 và ⋮19⋮19
Mà tt là số tự nhiên nhỏ nhất nên t+216t+216 là BCNN(17;19)BCNN(17;19)
BCNN(17;19)=323BCNN(17;19)=323
⇒t+216=323⇒t+216=323
⇒t=323−216=107⇒t=323−216=107
Vậy, số cần tìm là 107.
Tìm 1 số tự nhiên nhỏ nhất sao cho chia nó cho 17 dư 4, chia nó cho 19 thì dư 11
x:19(dư 12) x=19n+12(1) (n là số tự nhiên)
x=19n+12 = 17n+(2n+12) mà x:17 dư 5 2n+7 chia hết cho 17
n=5+17k(2) (k là số tự nhiên)
Thay (2) vào (1) x=19(5+17k)+12=323k+107
Trả lời: x=323k +107 (cho k =0,1,2,3,...) x=107 ;430;753;1076 (thử chia cho 17;19 là biết đúng sai liền)
Lê Minh Đức copy ở đâu vậy?( bài làm ko liên quan mấy)
tìm số tự nhiên nhỏ nhất sao cho chia nó cho 17 thif dư 4; chia nó cho 19 thì dư 11
Tìm một số tự nhiên nhỏ nhất sao cho khi nó chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
số 809 nha bạn
nếu sai thì thôi bạn nha
Số 809 chia 11 dư 6 chia 4 dư 1 va 19 dư 11
Tìm số tự nhiên nhỏ nhất sao cho khi chia nó cho 11 dư 6 cho 4 dư 1 cho 19 dư 11
so tu nhien do la 809 nan nha nho k cho minh roi minh giai cu the cho
bài 1:tìm số tự nhiên nhỏ nhất sao cho nó chia cho 17 dư 7,chia nó cho 19 dư 14
bài 2:1 số tự nhiên khi chia cho 6 thì dư 3,chia 7 dư 1.Hỏi số đó chia 42 dư bao nhiêu?
Tìm số tự nhiên nhỏ nhất sao cho khi chia nó cho 17 thì dư 5, còn chia cho 19 thì dư 7
Gọi số cần tìm là \(n\)thì \(n\)chia cho \(17\)dư \(5\)và chia cho \(19\)dư \(7\).
Suy ra \(n+12\)chia hết cho cả \(17\)và \(19\).
mà \(n\)nhỏ nhất nên \(n+12=BCNN\left(17,19\right)=323\)
\(\Leftrightarrow n=323-12=311\).
tìm số tự nhiên nhỏ nhất sao cho chia nó cho 17 thì dư 5 ; chia nó cho 19 thì dư 12
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
mk đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng:
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3.
Giả sử x < y < z
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho
a + B(z) + r3 chia hết cho x, y, z
Khi đó a + B(z) + r3 là BC(x, y, z)
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.