Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Bảo Hân
Xem chi tiết
duong khanh chi
Xem chi tiết
lyly
Xem chi tiết
Lấp La Lấp Lánh
3 tháng 2 2022 lúc 22:10

\(A=\left(3+3^2+3^3+3^4\right)+3^4\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)

\(=120+3^4.120+...+3^{2008}.120=120\left(1+3^4+...+3^{2008}\right)⋮120\)

Trần Tuấn Hoàng
3 tháng 2 2022 lúc 22:13

\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(A=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)

\(A=\left(3+3^2+3^3+3^4\right)\left(1+3^4+...+3^{2008}\right)\)

\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)

hưng phúc
3 tháng 2 2022 lúc 22:15

\(A=3+3^2+3^3+...+3^{2012}\)

\(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{2009}+...+3^{2012}\right)\)

\(A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(A=3.40+3^5.40+...+3^{2009}.40\)

\(A=120+3^4.120+...+3^{2008}.120\)

\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)

Ko cần bít
Xem chi tiết
Lương Nguyễn Anh Đức
Xem chi tiết
Hồ Thu Giang
22 tháng 11 2015 lúc 12:38

Xét tử:

\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)

\(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)

\(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)

\(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)

Thay vào ta có:

A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)

=> A = 2013 

Mà 2013 chia hết cho 3

=> A chia hết cho 3

Nguyễn Thị Thùy Dương
22 tháng 11 2015 lúc 12:22

A = 2013  chia hết cho 3 nhé

Ngô Chí Tài
Xem chi tiết
Ngô Chí Tài
21 tháng 10 2021 lúc 22:47

giúp tớ với

Khách vãng lai đã xóa
trường giang
17 tháng 12 2021 lúc 8:46

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

Khách vãng lai đã xóa
nguyen huu hai dang
Xem chi tiết
Đỗ Thị Thảo Hiền
14 tháng 2 2016 lúc 12:47

http://d.f24.photo.zdn.vn/upload/original/2016/02/14/10/03/3204324726_616688374_574_574.jpg

Andrea
14 tháng 2 2016 lúc 12:48

có chia hết

nguyen huu hai dang
14 tháng 2 2016 lúc 12:49

giải thích ra với

Phuong nee
Xem chi tiết
.
7 tháng 1 2021 lúc 20:37

Ta có: \(A=3+3^2+3^3+...+3^{2012}\)

\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)

\(=3.40+3^5.40+...+3^{2009}.40\)

\(=120+3^4.120+...+3^{2008}.120\)
\(=120\left(1+3^4+...+3^{2008}\right)\)

Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)

hay \(A⋮120\)  (đpcm)

Khách vãng lai đã xóa
Lê Quý Vượng
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 10 2021 lúc 17:41

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)