Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Thị Ngọc Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
10 tháng 5 2017 lúc 9:44

a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).

Bùi Thị Vân
10 tháng 5 2017 lúc 9:56

b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).

Bùi Thị Vân
10 tháng 5 2017 lúc 10:05

c) \(\left(tan\alpha-tan\beta\right)cot\left(\alpha-\beta\right)-tan\alpha tan\beta\)
\(=\left(\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}\right).\dfrac{cos\left(\alpha-\beta\right)}{sin\left(\alpha-\beta\right)}-tan\alpha tan\beta\)
\(=\left(\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}\right).\dfrac{cos\left(\alpha-\beta\right)}{sin\left(\alpha-\beta\right)}\)\(-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\)
\(=\dfrac{sin\left(\alpha-\beta\right)}{cos\alpha cos\beta}.\dfrac{cos\left(\alpha-\beta\right)}{sin\left(\alpha-\beta\right)}-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\)
\(=\dfrac{cos\left(\alpha-\beta\right)}{cos\alpha cos\beta}-\dfrac{sin\alpha sin\beta}{cos\alpha cos\beta}\)
\(=\dfrac{cos\alpha cos\beta+sin\alpha sin\beta-sin\alpha sin\beta}{cos\alpha cos\beta}=\dfrac{cos\alpha cos\beta}{cos\alpha cos\beta}=1\).

Nguyễn Khánh Ly
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2019 lúc 16:41

\(5sina=3sin\left(a+2b\right)\)

\(\Leftrightarrow5sin\left(a+b-b\right)=3sin\left(a+b+b\right)\)

\(\Leftrightarrow5sin\left(a+b\right)cosb-5cos\left(a+b\right)sinb=3sin\left(a+b\right)cosb+3cos\left(a+b\right)sinb\)

\(\Leftrightarrow2sin\left(a+b\right).cosb=8cos\left(a+b\right)sinb\)

\(\Leftrightarrow\frac{sin\left(a+b\right)}{cos\left(a+b\right)}=\frac{4sinb}{cosb}\)

\(\Leftrightarrow tan\left(a+b\right)=4tanb\)

Nguyễn Thùy Lâm
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 6 2020 lúc 21:44

Theo Viet: \(\left\{{}\begin{matrix}tana+tanb=p\\tana.tanb=q\end{matrix}\right.\)

\(\Rightarrow tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{p}{1-q}\)

\(\Rightarrow A=cos^2\left(a+b\right)+psin\left(a+b\right)+q.sin^2\left(a+b\right)\)

\(=\frac{1}{cos^2\left(a+b\right)}\left(1+p.\frac{sin\left(a+b\right)}{cos\left(a+b\right)}+q.\frac{sin^2\left(a+b\right)}{cos^2\left(a+b\right)}\right)\)

\(=\left[1+tan^2\left(a+b\right)\right]\left[1+p.tan\left(a+b\right)+q.tan^2\left(a+b\right)\right]\)

\(=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]\left[1+\frac{p^2}{1-q}+\frac{p^2q}{\left(1-q\right)^2}\right]\)

\(=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]\left[1+\frac{p^2}{\left(1-q\right)^2}\right]=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]^2\)

Cao Chi Hieu
Xem chi tiết
B.Trâm
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2020 lúc 12:47

1.

Ý tưởng thế này: nhìn vế trái phần đáp án có \(tan\left(a+b\right)\) nên cần biến đổi giả thiết xuất hiện \(sin\left(a+b\right)\) , vậy ta làm như sau:

\(sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)

\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right).sina\)

\(\Leftrightarrow2sina.cos\left(a+b\right)=sin\left(a+b\right).cosa\)

\(\Rightarrow2tana=tan\left(a+b\right)\)

2.

Đây là 1 dạng cơ bản, nhìn vào lập tức cần ghép x với 3x (đơn giản vì \(\frac{x+3x}{2}=2x\))

\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}\)

\(=\frac{cos2x}{sin2x}=cot2x\)

Kinder
Xem chi tiết
Hồng Phúc
1 tháng 6 2021 lúc 16:51

2.

ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)

\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)

\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))

Nếu \(y=1\), khi đó:

\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)

Phương trình này vô nghiệm

Nếu \(y=2x-1\), khi đó:

\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))

\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)

Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)

Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\)\(2x>0\)

\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)

Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)

Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.

Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)

tuyền kim
Xem chi tiết
Pumpkin Night
17 tháng 11 2019 lúc 9:02

vt lại đuề boài đi cậu, ko hịu nà :)

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
10 tháng 5 2017 lúc 14:28

a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).

Bùi Thị Vân
10 tháng 5 2017 lúc 14:39

b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .

Bùi Thị Vân
10 tháng 5 2017 lúc 15:00

c) \(2\left(sin^6\alpha+cos^6\alpha\right)+1=2\left(sin^2\alpha+cos^2\alpha\right)\)\(\left(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha\right)+1\)
\(=2\left(sin^4\alpha+cos^4\alpha-sin^2\alpha cos^2\alpha\right)+1\)
\(=2\left(sin^4\alpha+cos^4\alpha\right)+sin^2\alpha-sin^2\alpha cos^2\alpha+\)\(cos^2\alpha-sin^2\alpha cos^2\alpha\)
\(=2\left(sin^4\alpha+cos^4\alpha\right)+sin^2\alpha\left(1-cos^2\alpha\right)+\)\(cos^2\alpha\left(1-sin^2\alpha\right)\)
\(=2\left(sin^4\alpha+cos^4\alpha\right)+sin^2\alpha.sin^2\alpha+cos^2\alpha.cos^2\alpha\)
\(=3\left(sin^4\alpha+cos^4\alpha\right)\).

trần trang
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 5 2020 lúc 19:48

\(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}=1\)

\(\Rightarrow a+b=45^0\)