So sánh các số sau:
\(7^{3n}\) và \(3^{7n}\)
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:a)4n+3 và 2n+3
b)7n+13 và 2n+4
c)9n+24 và 3n+4
d)18n+3 và 21n+7
a) Đặt d = (4n + 3, 2n + 3).
Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.
Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3
\(\Leftrightarrow n⋮3̸\).
Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.
Chứng minh rằng với mọi số tự nhiên n thì các số sau nguyên tố cùng nhau:
a) 2 n + 3 v à 4 n + 8
b) 2 n + 5 v à 3 n + 7
c) 7 n + 10 v à 5 n + 7
Bài 1: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 2: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
Thanks,tui cũng đang mắc ở bài 2
tìm STN n để các số sau là các số nguyên tố cùng nhau
a, 2n+1 và 7n+2
b, 3n+2 và 11n+5
c, 2n+3 và 4n+9
d, 7n+3 và 3n+2
a) 2n+1 và 7n+2
Gọi d là ƯCLN của 2n+1 và 7n+2
Vì 2n+1 chia hết cho d,7n+2 chia hết cho d
TC: 7.(2n+1) chia hết cho d , 2.(7n+2) chia hết cho d
14n+7 chia hết cho d , 14n+14 chia hết cho d
Nên (14n+14)-(14n+7) chia hết cho d
14n+14-14n+7 chia hết cho d
7 chia hết cho d
d=7
Kết luận
Các câu khác tương tự nhé
Chứng tỏ các số sau là hai số nguyên tố băng nhau (với n là số tự nhiên)
a. 7n + 10 và 5n + 7
b. 2n + 3 và 4n + 8
c. 9n + 24 và 3n + 4
d. 18n + 3 và 21n + 7
Chứng tỏ các số sau là hai số nguyên tố băng nhau (với n là số tự nhiên)
a. 7n + 10 và 5n + 7
b. 2n + 3 và 4n + 8
c. 9n + 24 và 3n + 4
d. 18n + 3 và 21n + 7
b: Vì 2n+3 là số lẻ
mà 4n+8 là số chẵn
nên 2n+3 và 4n+8 là hai số nguyên tố cùng nhau
so sánh các lũy thừa sau a, 625 mũ 5 và 125 mũ 7 b, 3 mũ 2n và 2 mũ 3n
6255 và 1257
a, 6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 520 < 521 nên 6255 < 1257
b, 32n = (32)n = 9n
23n = (23)n = 8n
9n > 8n ( nếu n > 0)
9n = 8n (nếu n = 0)
Vậy nếu n = 0 thì 23n = 32n
nếu n > 0 thì 32n > 23n
a) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}>5^{20}\)
\(\Rightarrow625^5< 125^7\)
b) \(3^{2n}=9^n\)
\(2^{3n}=8^n< 9^n\)
\(\Rightarrow3^{2n}>2^{3n}\)
So sánh các lũy thừa sau
8^5 và 3*4^7
2^3n và 3^2n
Hai số 2^100 và 5^100 viết liền nhau thì được số có mấy chữ số
So sánh các số sau, số nào lớn hơn?
a) 625 mũ 5 và 125 mũ 7
b) 3 mũ 2n và 2 mũ 3n ( n thuộc tập hợp N*)
a. \(625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)
b. với n khác 0 \(3^{2n}=9^n>8^n=2^{3n}\)
Còn với n=0 thì \(3^{2n}=2^{3n}=1\)