tìm các số nguyên x,y thỏa mãn đẳng thức y^2-(y-2)x^2=1
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: y(x-1)=x^2+2
Từ phương trình \(y\left(x-1\right)=x^2+2\Rightarrow x^2+2\vdots x-1\to x^2-1+3\vdots x-1\to3\vdots x-1\to x-1=\pm1,\pm3.\)
Do vậy mà \(x=2,0,4,-2\). Tương ứng ta có \(y=6,-2,6,-2\)
Vậy các nghiệm nguyên của phương trình \(\left(x,y\right)=\left(2,6\right),\left(0,-2\right),\left(4,6\right),\left(-2,-2\right).\)
Tìm các số nguyên x,y thỏa mãn đẳng thức: y2 - ( y+2 )*x2 = 1
Tìm các số nguyên x, y thỏa mãn đẳng thức: \(y^2-x^2\left(y+2\right)=1\).
Tìm các số nguyên x, y thỏa mãn đẳng thức:
\(2y^2x+x+y+1=x^2+y^2+xy\)
Tìm x, y là các số nguyên thỏa mãn đẳng thức xy^2 = x^2 + x +2
Tìm tất cả các số nguyên tố (x;y) thỏa mãn đẳng thức: x2 - 2y2 = 1?
Biến đổi bt tương đương : (x^2-1) / 2 = y^2
Ta có: vì x,y là số nguyên dương nên
+) x > y và x phải là số lẽ.
Từ đó đặt x = 2k + 1 (k nguyên dương);
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Biến đổi bt tương đương : (x^2-1) / 2 = y^2
Ta có: vì x,y là số nguyên dương nên
+) x > y và x phải là số lẽ.
Từ đó đặt x = 2k + 1 (k nguyên dương);
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Nhớ like cho mình nha ^^
Tìm các cặp số nguyên (x; y) thỏa mãn đẳng thức: \(x^2y+3x^2-4y=15\)
Ta có: \(x^2y+3x^2-4y=15\)
=>\(x^2\left(y+3\right)-4y-12=15-12=3\)
=>\(\left(x^2-4\right)\left(y+3\right)=3\)
=>\(\left(x^2-4;y+3\right)\in\left\lbrace\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\rbrace\)
=>\(\left(x^2;y\right)\in\left\lbrace\left(5;0\right);\left(7;-2\right);\left(3;-6\right);\left(1;-4\right)\right\rbrace\)
mà x nguyên
nên \(\left(x^2;y\right)\in\left(1;-4\right)\)
=>(x;y)∈{(1;-4);(-1;-4)}
Tìm các số nguyên x, y thỏa mãn đẳng thức : 2y2x – y2 + x + y + 1 = x2 +xy +y2
Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với Em tham khảo tại link này nhé!
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)