x(3x+2)+(x+1)^2-(2x-5)(2x+5)= -12 tìm x
Tìm x , biết : x ( 3x + 2 ) + ( x + 1 )2 – ( 2x – 5 )( 2x + 5 ) = – 12
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25+12=0\\ \Leftrightarrow4x+38=0\\ \Leftrightarrow x=-\dfrac{19}{2}\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\\ \Leftrightarrow4x=-38\Leftrightarrow x=-\dfrac{19}{2}\)
Tìm x , biết : x ( 3x + 2 ) + ( x + 1 )2 – ( 2x – 5 )( 2x + 5 ) = – 12
\(\Rightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\)
\(\Rightarrow4x=-38\Rightarrow x=-\dfrac{19}{2}\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25+12=0\\ \Leftrightarrow4x+38=0\\ \Leftrightarrow x=-\dfrac{19}{2}\)
Tìm x biết
a) (x+2).(x+3) - (x-2).(x+5)=10
b) (3x+2). (2x+9) - (x+2). (8x+11)=(x+1).(3-2x)
c) 3.(2x-1).(3x-1)-(2x-3).(9x-1)=0
d) (5x-8).(4x-5)-(3x-4).(2x+12)=12
a)(x+2).(x+3)-(x-2).(x+5)=10
( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10
x^2 +3x+2x+6-x^2 -5x+2x+10-10=0
2x+6=0
2x=-6
x=-3
Mọi người check xem đúng không:
<=>x(3x+2)+(x+1)^2 - (2x - 5)(2x+5)= -12
<=>3x^2 + 2x + (x+1)^2 - 2x^2 - 5^2= -12
<=>(3x^2 - 2x^2) + [ (x +1)^2 -5^2] + 2x = -12
<=>(3x - 2x)(3x + 2x)+ (x+1-5) (x+1+5) + 2x = -12
=> 3x - 2x = -12 ; 3x+2x = -12 ; x+1+5 = -12 ; x+1-5 = -12 hoặc 2x = -12
=> x = -12 ; 5x =-12 ; x+ 6 = -12 ; x -4 = -12 hoặc x = -12: 2
=> x= -12 ; x = -12:5; x = -12 :6; x = -12 + 4 hoặc x= -6
=> x= -12 x = -12/5; x = -2 ; x = -8 hoặc x = -6
đúng rồi nha bạn
asdfghjkl;';lkjnhbgvfcvbnm,./
Mọi người check xem đúng không:
<=>x(3x+2)+(x+1)^2 - (2x - 5)(2x+5)= -12
<=>3x^2 + 2x + (x+1)^2 - 2x^2 - 5^2= -12
<=>(3x^2 - 2x^2) + [ (x +1)^2 -5^2] + 2x = -12
<=>(3x - 2x)(3x + 2x)+ (x+1-5) (x+1+5) + 2x = -12
=> 3x - 2x = -12 ; 3x+2x = -12 ; x+1+5 = -12 ; x+1-5 = -12 hoặc 2x = -12
=> x = -12 ; 5x =-12 ; x+ 6 = -12 ; x -4 = -12 hoặc x = -12: 2
=> x= -12 ; x = -12:5; x = -12 :6; x = -12 + 4 hoặc x= -6
=> x= -12 x = -12/5; x = -2 ; x = -8 hoặc x = -6
bạn làm sai rồi !
\(\Leftrightarrow x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=-12\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=-12\)
\(\Leftrightarrow4x+26=-12\)
\(\Leftrightarrow4x=-38\)
\(\Leftrightarrow x=-\frac{19}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{19}{2}\right\}\)
`a,x(x-1)-(x+2)^2=1`
`<=>x^2-x-x^2-4x-4=1`
`<=>-5x=5`
`<=>x=-1`
`b,(x+5)(x-3)-(x-2)^2=-1`
`<=>x^2+2x-15-x^2+4x-4+1=0`
`<=>6x-18=0`
`<=>x-3=0`
`<=>x=3`
`c,x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>-3(x-2)=0`
`<=>x-2=0`
`<=>x=2`
`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`
`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`
`<=>4x+26=-12`
`<=>4x=-38`
`<=>x=-19/2`
Tìm x biết :
a)(3x-3)+(x-2)=(2x-2)-(x-1).
b)(4x-3)+(3x+5)=3x-2.
c)(6x-8)-5(x+2)=2x-12.
d)(9x-2)-4(2x+5)=-12.
a)
<=> 3x - 3 + x - 2 = 2x - 2 - x + 1
<=> 3x + x - 2x + x = -2 + 1 + 3 + 2
<=> 3x = 4
<=> x = 4/3
Các câu sau làm tương tự
\(\left(3x-3\right)+\left(x-2\right)=\left(2x-2\right)-\left(x-1\right)\)
<=> \(3x-3+x-2=2x-2-x+1\)
<=> \(4x-5=x-1\)
<=> \(3x=4\)
<=> \(x=\frac{4}{3}\)
Vậy....
Tìm số nguyên x
a)(2x+5)÷(2x+1)
b)(3x+5)÷(x+1)
c)(3x+8)÷(x-1)
d)(5x+12)÷(x-2)
e)(7x-12)÷(x+16)
a) \(\dfrac{2x+5}{2x+1}=\dfrac{2x+1+4}{2x+1}=\dfrac{2x+1}{2x+1}+\dfrac{4}{2x+1}=1+\dfrac{4}{2x+1}\)
Để \(\dfrac{2x+5}{2x+1}\in Z\) thì \(\dfrac{4}{2x+1}\in Z\)
\(\Rightarrow4\) ⋮ \(2x+1\)
\(\Rightarrow2x+1\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow2x\in\left\{0;-2;1;-3;3;-5\right\}\)
\(\Rightarrow x\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};\dfrac{3}{2};-\dfrac{5}{2}\right\}\)
Mà x nguyên \(\Rightarrow\text{x}\in\left\{0;-1\right\}\)
b) \(\dfrac{3x+5}{x+1}=\dfrac{3x+3+2}{x+1}=\dfrac{3\left(x+1\right)+2}{x+1}=\dfrac{3\left(x+1\right)}{x+1}+\dfrac{2}{x+1}=3+\dfrac{2}{x+1}\)
Để \(\dfrac{3x+5}{x+1}\in Z\) thì \(\dfrac{2}{x+1}\in Z\)
\(\Rightarrow2\) ⋮ \(x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3\right\}\)
c) \(\dfrac{3x+8}{x-1}=\dfrac{3x-3+11}{x-1}=\dfrac{3\left(x-1\right)+11}{x-1}=\dfrac{3\left(x-1\right)}{x-1}+\dfrac{11}{x-1}=3+\dfrac{11}{x-1}\)
Để: \(\dfrac{3x+8}{x-1}\in Z\) thì \(\dfrac{11}{x-1}\in Z\)
\(\Rightarrow11\) ⋮ \(x-1\)
\(\Rightarrow x-1\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow x\in\left\{2;0;12;-10\right\}\)
d) \(\dfrac{5x+12}{x-2}=\dfrac{5x-10+22}{x-2}=\dfrac{5\left(x-2\right)+22}{x-2}=\dfrac{5\left(x-2\right)}{x-2}+\dfrac{22}{x-2}=5+\dfrac{22}{x-2}\)
Để: \(\dfrac{5x+12}{x-2}\in Z\) thì \(\dfrac{22}{x-2}\in Z\)
\(\Rightarrow22\) ⋮ \(x-2\)
\(\Rightarrow x-2\inƯ\left(22\right)=\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
\(\Rightarrow x\in\left\{3;1;4;0;13;-9;24;-20\right\}\)
e) \(\dfrac{7x-12}{x+16}=\dfrac{7x+112-124}{x+16}=\dfrac{7\left(x+16\right)-124}{x+16}=\dfrac{7\left(x+16\right)}{x+16}-\dfrac{124}{x+16}=7-\dfrac{124}{x+16}\)
Để \(\dfrac{7x-12}{x+16}\in Z\) thì \(\dfrac{124}{x+16}\in Z\)
\(\Rightarrow124\) ⋮ \(x+16\)
\(\Rightarrow x+16\inƯ\left(124\right)=\left\{1;-1;2;-2;4;-4;31;-31;62;-62;124;-124\right\}\)
\(\Rightarrow x\in\left\{-15;-17;-14;-18;-12;-20;15;-47;46;-78;108;-140\right\}\)