Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tu Pham Van
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Thị Phương Thảo
22 tháng 7 2021 lúc 20:18

Toán lớp 6 

Khách vãng lai đã xóa
Tu Pham Van
Xem chi tiết
Nguyễn Huy Tú
21 tháng 12 2016 lúc 19:21

Ta có: \(B=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(B\ge\left|x-1+2-x\right|=\left|-1\right|=1\)

Dấu " = " xảy ra khi \(x-1\ge0;2-x\ge0\)

\(\Rightarrow x\ge1;x\le2\)

\(\Rightarrow1\le x\le2\)

Vậy \(MIN_B=1\) khi \(1\le x\le2\)

 

Đặng Yến Linh
21 tháng 12 2016 lúc 19:44

GTNN B = 1 khi x =1;2

nhập kq: (1;2)

Hà Trí Kiên
Xem chi tiết

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Who did you love
Xem chi tiết
Legona Ace
14 tháng 1 2018 lúc 12:00

\(B=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

Dấu "=" xảy ra khi: \(1\le x\le2\)

Phạm Khánh Vy
Xem chi tiết
Nguyễn Đức Trí
11 tháng 7 2023 lúc 22:00

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

 

Đỗ Thế Hưng
Xem chi tiết
Phùng Minh Quân
22 tháng 3 2018 lúc 20:25

Áp dụng bất đẳng thức giá trị tuyệt đối ta được : 

\(B=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=\left|1\right|=1\)

Dấu "=" xảy ra khi \(\left(x-1\right)\left(2-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}}}\)

\(\Rightarrow\)\(x\in\left\{1;2\right\}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-1\le0\\2-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge2\end{cases}}}\)

\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)

Vậy \(B_{min}=1\) khi \(x=1\) hoặc \(x=2\)

Chúc bạn học tốt ~ 

Oh Nova
22 tháng 3 2018 lúc 20:19

 Ta có :

/x-1/+/x-2/=/x-1/+/2-x/ luôn >= /x-1+2-x/

Mà  /x-1+2-x/ = /1/=1

Vậy /x-1/+/x-2/ luôn lớn hơn hoặc bằng 1

Vậy GTNN của biểu thức là 1 khi /x-1/+/x-2/=1

Vì /x-1/ >= 0 với mọi x /       

Vì /x-2/ >= 0 với mọi x /            

Khi đó: x-2=0 => x=2

             x-1=0 => x=1

Vậy GTNN của biểu thức là 1 khi x=1

                                                      x=2

phạm Lê minh
Xem chi tiết
Nguyễn thành Đạt
27 tháng 1 2023 lúc 9:01

\(Ta\) \(có:\) \(A=|x-1|+|x-2|\)

\(mà:\) \(|x-1|\ge0\) \(và\) \(|x-2|\ge0\)

\(\RightarrowĐể\) \(A_{min}\) \(thì\) \(|x-1|và\) \(|x-2|\) \(nhỏ\) \(nhất\)

\(\Rightarrow x\in(1;2)\)

Phạm Lê Minh
27 tháng 1 2023 lúc 9:10

hi

 

OoO Kún Chảnh OoO
Xem chi tiết

b,xy+3x-y=6
(xy+3x)-(y+3)=3 0,5
x(y+3)-(y+3) =3
(x-1)(y+3)=3=3.1=-3.(-1)    0,5
Có 4 trường hợp xảy ra :
 ;  ;  ;  
Từ đó ta tìm được 4 cặp số x; y thoả mãn là :
(x=4;y=-2) ; (x=2;y=0) ; (x=-2;y=-4) ; (x=0; y=-6)    1.0

phần a khó quá