Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le tho ninh
Xem chi tiết
Đức Chimry
Xem chi tiết

n2+2014" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n2+2014" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-table; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml"> không là số chính phương.

Cá Chép Nhỏ
17 tháng 6 2019 lúc 15:09

Giả sử tồn tại  m \(\in\)N để m2 + 2014 là số chính phương

=> m2 + 2014 = n2    ( n \(\in\)N*)

     n2 - m2       = 2014

Xét : (n - m )( m+n) = (n-m)n + (n-m)m = n2 - m.n + m.n - m2 = n2 - m2 

( n-m)( n + m) = 2014 (1)

Thấy ( n-m )+( n + m) = 2n là số chẵn

Vậy n -m và n +m là hai số cùng chẵn hoặc cùng lẻ

       (n -m)(n+m) = 2014 là 1 số chẵn

=> n - m và n + m không thể là hai số lẻ

=> n - m và n + m không thể là hai số chẵn.

=> n - m = 2p và m +n = 2q ( p;q \(\in\)N)

=> (n-m)(n +m) = 2p . 2q = 4pq

=> (n-m)(n+m) \(⋮\)4 (2)

Mà 2014 \(⋮̸\)4 (3)

Từ (1),(2),(3) => Giả sử này sai => không có m t/m

le nhan
Xem chi tiết
Susanna
Xem chi tiết
I lay my love on you
Xem chi tiết
I lay my love on you
25 tháng 10 2017 lúc 21:30

La so Chinh Phuong nhe

Vũ Phương Linh
Xem chi tiết
Nguyễn Anh Quân
17 tháng 12 2017 lúc 14:44

a,n=1 thì tm

n=2 thì ko tm

n=3 thì tm

n=4 thì ko tm

n >= 5 thì n! chia hết cho 2 và 5 => n! có tận cùng là 0

Mà 1!+2!+3!+4! = 33

=> 1!+2!+3!+4!+.....+n! có tận cùng là 3 nên ko chính phương

Vậy n thuộc {1;3}

k mk nha

Nguyễn Khánh Bảo Thi
Xem chi tiết
son goku
Xem chi tiết
Quan Bai Bi An
Xem chi tiết