Chứng tỏ rằng: Nếu 9x + 5y chia hết cho 17 thì 2x + 3y chia hết cho 17
Chứng tỏ rằng 9x+5y chia hết cho 17 thì 2x+3y cũng chia hết cho 17
9x+5y chia hết cho 17
=>17x-8x+17y-12y chia hết cho 17
=>17(x+y)-4(2x+3y) chia hết cho 17
=>2x+3y chia hết cho 17
đến trưa rồi em đói quá cô ơi trưa nay ăn j cô hỡiiiiiiiiiiiiiiiiii có thịt quay không thì cho thịt chó nếu không thì thịt bò
chứng tỏ rằng 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17
Vì 2x + 3y ⋮ 17 => 4(2x + 3y) ⋮ 17
=> 8x + 12y ⋮ 17
Xét tổng (8x + 12y) + (9x + 5y)
= 17x + 17y = 17(x + y) ⋮ 17
Mà 8x + 12y ⋮ 17 => 9x + 5y ⋮ 17 ( đpcm )
Ta có:
2x + 3y ⋮ 17 ⇔ 9 (2x + 3y) ⋮ 172x + 3y ⋮ 17 ⇔ 9 (2x + 3y) ⋮ 17 (vì (9, 17) = 1) ⇔18x + 27 y ⋮ 17 ⇔ 18 x + 10y + 17y ⋮ 17 ⇔ 18 x + 10y ⋮ 17 ⇔ 18x + 27y ⋮ 17 ⇔ 18x + 10y +17y ⋮ 17 ⇔ 18x + 10y ⋮ 17 (vì 17y ⋮ 17 17y ⋮ 17) ⇔ 2 (9x + 5y) ⋮ 17 ⇔ 9x + 5y ⋮ 17 ⇔ 2 (9x + 5y) ⋮ 17 ⇔ 9x + 5y ⋮ 17 (vì (2, 17) = 1).Điều ngược lại vẫn đúng, vì khi phân tích ở trên, ta luôn dùng được dấu ⇔
chứng tỏ rằng 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17 ?
2x +3y chia hết cho 17 thì 2x + 3y + 17y + 34 x cũng chia hết cho 17
= 36x + 20y
= 4 ( 9x + 5 ý ) cùng chia hết cho 17
2x+3y chia het cho 17 thi 2x +3y +17y +34x cung chia het cho 17
=36x+20y
=4(9x +5y) chia het cho 17
minh ko chac voi cau tra loi cho lam !
Chứng tỏ rằng 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17
9x + 5y=17x - 8x + 17y - 12y=17(x+y) - 8x+12y
=17(x+y) - 4(2x+3y)
Vì 17(x+y) chia 17 dư 0 và 4(2x+3y) chia 17 dư 0
Nên 17(x+y) - 4(2x+3y) chia hết cho 17
=> 9x+5y chia hết cho 17
Chứng tỏ rằng :2x+3y chia hết cho 17 thì 9x+5y cũng sẽ chia hết cho 17
Xét 4(2x+3y)+1(9x+5y)
=8x+12y+9x+5y
=(8x+9x)+(12y+5y)
=17x+17y
=17(x+y)
Có:17(x+y)chia hết cho 17 ;2x+3y chia hết cho 17
nên 9x+5y chia hết cho 17
Vậ :2x+3y chia hết cho 17 thì 9x+5y cũng sẽ chia hết cho 17
Chứng tỏ rằng: (2x+3y) chia hết cho 17 thì (9x+5y) chia hết cho 17 và ngược lại
Ta có : 2x + 3y ⋮ 17 => 4(2x + 3y) ⋮ 17
=> 8x + 12y ⋮ 17
Xét tổng (8x + 12y) + (9x + 5y)
= (8x + 9x) + (12y + 5y)
= 17x + 17y = 17(x + y) ⋮ 17
=> (8x + 12y) + (9x + 5y) ⋮ 17
Mà (8x + 12y) ⋮ 17 => (9x + 5y) ⋮ 17 ( đpcm )
Ta có \(2x+3y⋮17\Leftrightarrow18x+27y⋮17\)
\(\Rightarrow18x+27y-17y⋮17\)
\(\Rightarrow18x+10y⋮17\)mà (2;17)=1
\(\Rightarrow9x+5y⋮17\)
Ngược lại làm tương tự bạn nhé
Chứng minh rằng: nếu 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17
C/M rằng nếu 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17 và ngược lại nếu 9x+5y chia hết cho 17 thì 2x+3y chia hết cho 12 [x,y thuộc N
+, Nếu 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 26x+39y-17x-34y chia hết cho 17
=> 9x+5y chia hết cho 17
+, Nếu 9x+5y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 9x+5y+17x+34y chia hết cho 17
=> 26x+39y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
Chứng tỏ rằng : 2x+3y chia hết cho 17 nên 9x+5y chia hết cho 17